This large multicenter study demonstrates differential prognostic risks of the three major PTC variants and establishes a unique risk order of TCPTC > CPTC ≫ FVPTC, providing important clinical implications for specific variant-based management of PTC.
Ch22q LOH is preferentially associated with RAS mutations in papillary and in poorly differentiated thyroid cancer (PDTC). The 22q tumor suppressor NF2, encoding merlin, is implicated in this interaction because of its frequent loss of function in human thyroid cancer cell lines. Nf2 deletion or Hras mutation are insufficient for transformation, whereas their combined disruption leads to murine PDTC with increased MAPK signaling. Merlin loss induces RAS signaling in part through inactivation of Hippo, which activates a YAP-TEAD transcriptional program. We find that the three RAS genes are themselves YAP-TEAD1 transcriptional targets, providing a novel mechanism of promotion of RAS-induced tumorigenesis. Moreover, pharmacological disruption of YAP-TEAD with verteporfin blocks RAS transcription and signaling, and inhibits cell growth. The increased MAPK output generated by NF2 loss in RAS-mutant cancers may inform therapeutic strategies, as it generates greater dependency on the MAPK pathway for viability.
Purpose: To identify papillary thyroid carcinoma (PTC)^associated transcripts, we compared the gene expression profiles of three Serial Analysis of Gene Expression libraries generated from thyroid tumors and a normal thyroid tissue. Experimental Design: Selected transcripts were validated in a panel of 57 thyroid tumors using quantitative PCR (qPCR). An independent set of 71 paraffin-embedded sections was used for validation using immunohistochemical analysis. To determine if PTC-associated gene expression could predict lymph node involvement, a separate cohort of 130 primary PTC (54 metastatic and 76 nonmetastatic) was investigated. The BRAF V600E mutational status was compared with qPCR data to identify genes that might be regulated by abnormal BRAF/MEK/extracellular signalregulated kinase signaling. Results: We identified and validated new PTC-associated transcripts. Three genes (CST6, CXCL14, and DHRS3) are strongly associated with PTC. Immunohistochemical analysis of CXCL14 confirmed the qPCR data and showed protein expression in PTC epithelial cells.We also observed that CST6, CXCL14, DHRS3, and SPP1 were associated with PTC lymph node metastasis, with CST6, CXCL14, and SPP1 being positively correlated with metastasis and DHRS3 being negatively correlated. Finally, we found a strong correlation between CST6 and CXCL14 expression and BRAF V600E mutational status, suggesting that these genes may be induced subsequently to BRAF activation and therefore may be downstream in the BRAF/MEK/extracellular signal-regulated kinase signaling pathway. Conclusion: CST6, CXCL14, DHRS3, and SPP1 may play a role in PTC pathogenesis and progression and are possible molecular targets for PTC therapy.
Loss of ABI gene family member 3-binding protein (ABI3BP ) expression may be functionally involved in the pathogenesis of cancer. Previous reports have indicated a loss of expression in lung cancer and a presumed role in inducing cellular senescence. We show here that ABI3BP expression is significantly decreased in most malignant thyroid tumors of all types. To better understand ABI3BP's role, we created a model by re-expressing ABI3BP in two thyroid cancer cell lines. Re-expression of ABI3BP in thyroid cells resulted in a decrease in transforming activity, cell growth, cell viability, migration, invasion, and tumor growth in nude mice. ABI3BP re-expression appears to trigger cellular senescence through the p21 pathway. Additionally, ABI3BP induced formation of heterochromatin 1-binding protein g-positive senescence-associated (SA) heterochromatin foci and accumulation of SA b-galactosidase. The combination of a decrease in cell growth, invasion, and other effects upon ABI3BP re-expression in vitro helps to explain the large reduction in tumor growth that we observed in nude mice. Together, our data provide evidence that the loss of ABI3BP expression could play a functional role in thyroid tumorigenesis. Activation of ABI3BP or its pathway may represent a possible basis for targeted therapy of certain cancers. Endocrine-Related Cancer (2008) 15 787-799
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.