Model Predictive Control is ubiquitous in the chemical industry and offers great advantages over traditional controllers. Notwithstanding, new plants are being projected without taking into account how design choices affect the MPC's ability to deliver better control and optimization. Thus a methodology to determine if a certain design option favours or hinders MPC performance would be desirable. This paper presents the economic MPC optimization index whose intended use is to provide a procedure to compare different designs for a given process, assessing how well they can be controlled and optimised by a zone constrained MPC. The index quantifies the economic benefits available and how well the plant performs under MPC control given the plant's controllability properties, requirements and restrictions. The index provides a monetization measure of expected control performance. This approach assumes the availability of a linear state-space model valid within the control zone defined by the upper and lower bounds of each controlled and manipulated variable. We have used a model derived from simulation step tests as a practical way to use the method. The impact of model uncertainty on the methodology is discussed. An analysis of the effects of disturbances on the index illustrates how they may reduce profitability by restricting the ability of a MPC to reach dynamic equilibrium near process restrictions, which in turn increases product quality giveaway and costs. A case of study consisting of four alternative designs for a realistically sized crude oil atmospheric distillation plant is provided in order to demonstrate the applicability of the index.
This work addresses the control and optimization of an industrial diesel hydrotreating unit (HDT) with MPC (Model Predictive Control). Initially, it is given a brief description of the diesel hydrotreating process, which is studied here and the requirements for the control system of this type of industrial plant are discussed. In order to best explore the capabilities of the MPC in the HDT unit a new MPC algorithm is proposed. In the controller considered here, the control objective function is extended with an economic objective that aims at to the increase of the conversion of the raw feed to the hydrotreated product, specially the most valuable streams, and to the minimization of catalyst degradation due to thermal instabilities. With the extended control objective, both control and optimization are performed simultaneously. In a simulation environment, it is shown that the proposed control algorithm is able to stabilize the industrial plant and to increase the profitability of its operation.
The present work introduces a new multi-model state-space formulation called simultaneous multi-linear prediction (SMLP), which is suitable for systems with significant gain variation due to nonlinearity. Standard multi-model formulations usually make use of a partitioned state-space, i.e., a state-space that is divided into regions to shift parameters of the state update equation according to the current location of the state, with a view to having a better approximation of a nonlinear plant on each region. This multi-model framework, also known as linear hybrid systems framework, makes use of different boundaries or partition rules concepts, which vary from systems of linear inequalities, propositional logic rules, or a combination of these. This standard approach inevitably introduces discontinuities in the output prediction as the state update equation parameters shift noticeably. Instead, the SMLP is built by defining and updating multiple states simultaneously, thus eliminating the need for partitioning the state-input space into regions and associating with each region a different state update equation. Each state's contribution to the overall output is obtained according to the relative distance between their identification (or linearisation) point and the current operating point, in addition to a set of parameters obtained through regression analysis. Unlike the methods belonging to the hybrid systems framework, no discontinuities are introduced in the output prediction
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.