Knowledge of the complexes formed by N-coordinating ligands and Cu(II) ions is of relevance in understanding the interactions of this ion with biomolecules. Within this framework, we investigated Cu(II) complexation with mono- and polydentate ligands, such as ammonia, ethylenediamine (en), and phthalocyanine (Pc). The obtained Cu-N coordination distances were 2.02 A for [Cu(NH(3))(4)](2+), 2.01 A for [Cu(en)(2)](2+), and 1.95 A for CuPc. The shorter bond distance found for CuPc is attributed to the macrocyclic effect. In addition to the structure of the first shell, information on higher coordination shells of the chelate ligands could be extracted by EXAFS, thus allowing discrimination among the different coordination modes. This was possible due to the geometry of the complexes, where the absorbing Cu atoms are coplanar with the four N atoms forming the first coordination shell of the complex. For this reason multiple scattering contributions become relevant, thus allowing determination of higher shells. This knowledge has been used to gain information about the structure of the 1:2 complexes formed by Cu(II) ions with the amino acids histidine and glycine, both showing a high affinity for Cu(II) ions. The in-solution structure of these complexes, particularly that with histidine, is not clear yet, probably due to the various possible coordination modes. In this case the square-planar arrangements glycine-histamine and histamine-histamine as well as tetrahedral coordination modes have been considered. The obtained first-shell Cu-N coordination distance for this complex is 1.99 A. The results of the higher shells EXAFS analysis point to the fact that the predominant coordination mode is the so-called histamine-histamine one in which both histidine molecules coordinate Cu(II) cations through N atoms from the amino group and from the imidazole ring.
This work reports a theoretical study of the x-ray absorption near-edge structure spectra at the Cu K edge in several Cu͑II͒ complexes with N-coordinating ligands showing a square-planar arrangement around metal cation. It is shown that single-channel multiple-scattering calculations are not able to reproduce the experimental spectra. The comparison between experimental data and ab initio computations indicates the need of including the contribution of two electronic configurations ͑3d 9 and 3d 10 L͒ to account for a proper description of the final state during the photoabsorption process. The best agreement between theory and experiment is obtained by considering a relative weight of 68% and 32% for the two absorption channels 3d 10 L and 3d 9 , respectively.
Quantitative determination of the hydration structure of hexaaquairidium(III), [Ir(H2O)6]3+, in aqueous solution, the most inert aqua ion known, has been achieved for the first time by a combined experimental-theoretical approach employing X-ray absorption spectroscopy and molecular dynamics (MD) simulations. The Ir LIII-edge extended X-ray absorption fine structure (EXAFS) spectrum and LI-, LII-, and LIII-edge X-ray absorption near-edge structure (XANES) spectra of three concentrations of [Ir(H2O)6]3+ in perchloric acid media were measured. To carry out classical MD simulations of the aqua ion in water, a new set of first-principles Ir-H2O intermolecular potentials, based on the hydrated ion concept, has been developed. Structural, dynamics, and energetic properties have been obtained from the analysis of the statistical trajectories generated. The Ir-O radial distribution function shows two well-defined peaks at 2.04 +/- 0.01 and 4.05 +/- 0.05 A corresponding to the first and second hydration shell, respectively; the fundamental frequencies for the aqua ion in water are well reproduced by the MD simulation, and its dynamic properties are similar to the experimental values corresponding to other hexahydrated trivalent ions. Particular attention has been devoted to the experimental determination of the second hydration shell. It has been found that contrarily to what expected on the basis of the inertness of the Ir3+ aquaion, the detection of the second hydration shell by EXAFS for this cation is more difficult than for others less inert aqua ions such as Cr3+ or Rh3+. But when combined with MD simulations it is possible to confirm the coordination distance for this shell at 4.1 +/- 0.1 A. In addition, the computation of LI, LII and LIII XANES spectra were carried out using the structural information obtained from MD. These computations allowed the assignment of special features of the spectra to the second hydration shell on a quantitative basis. Therefore, interestingly XANES spectra have given a stronger support to the second hydration shell than EXAFS. The fit of the LIII-edge EXAFS gives an accurate description of the first hydration shell structure in aqueous solution. The value for Ir-O first shell is 2.04 +/- 0.01 A. The statistical information available with the MD results has allowed the analysis of the standard deviation associated with the computation of the XANES spectrum. It is shown that the standard deviation increases with the number of hydration shells and this increase is nonuniform along the average spectrum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.