The long elusive structure of Cu͑II͒ hydrate in aqueous solutions, classically described as a Jahn-Teller distorted octahedron and recently proposed to be a fivefold coordination structure ͓Pasquarello et al., Science 291, 856 ͑2001͔͒, has been probed with x-ray-absorption spectroscopy by performing a combined theoretical and experimental analysis. Two absorption channels were needed to obtain a proper reproduction of the x-ray-absorption near-edge structure ͑XANES͒ region spectrum, as already observed in other Cu͑II͒ complexes ͓Chaboy et al., Phys. Rev. B 71, 134208 ͑2005͔͒. The extended x-ray-absorption fine-structure ͑EXAFS͒ spectrum was analyzed as well within this approach. Quite good reproductions of both XANES and EXAFS spectra were attained for several distorted and undistorted structures previously proposed. Nevertheless, there is not a clearly preferred structure among those including four-, five-, and sixfold coordinated Cu͑II͒ ions. Taking into account our results, as well as many more from several other authors using different techniques, the picture of a distorted octahedron for the Cu͑II͒ hexahydrate in aqueous solution, paradigm of the Jahn-Teller effect, is no longer supported. In solution a dynamical view where the different structures exchange among themselves is the picture that better suits the results presented here.
Extended X-ray absorption fine structure (EXAFS) spectra of Cr(3+) and Rh(3+) in aqueous solution are analyzed and compared with computed spectra derived from structural results obtained by molecular dynamics (MD) simulation. This procedure quantifies the reliability of the EXAFS structural determination when applied to ions in solution. It provides guidelines for interpreting experimental spectra of octahedrally coordinated metal cations in aqueous solution. A set of relationships among Debye-Waller factors is proposed on the basis of MD results to reduce the number of independent fit parameters. The determination of the second hydration shell is examined. Calculated XANES spectra compare well with experimental ones. Indeed, the splitting observed on the main peak of the Rh K-edge was anticipated by the calculations. Simulated spectra from MD structures of increasing cluster size show a relationship between the second hydration shell and features of the XANES region at energies just above the edge. The combination of quantum and statistical calculations with the XANES spectrum is found to be very fruitful to get insight into the quantitative estimation of structural properties of electrolyte solutions.
Low-coverage adsorption properties of the metal-organic framework MIL-47 were determined by a combined experimental and simulation study. Henry constants and low coverage adsorption enthalpies of C5-C8 linear and branched alkanes, cyclohexane and benzene were measured from 120 to 240 degrees C using pulse gas chromatography. An adapted force field for linear and branched alkanes in MIL-47 was used to compute the adsorption properties of those molecules. A new set of charges was developed for simulations with benzene in MIL-47. The adsorption enthalpy of linear alkanes increases with about 7.6 kJ mol(-1) per additional -CH2- group. Henry adsorption constants of iso-alkanes are slightly lower than those of the linear chains but the MIL-47 framework is not imposing steric constraints on the branched chains. Benzene and cyclohexane are adsorbed less strongly than n-hexane as they have less hydrogen atoms. For the studied non-polar molecules, the adsorption energies are dominated by van der Waals interactions and benzene adsorption is additionally influenced by Coulombic interactions. The simulated tendencies are in good agreement with the experiments.
Knowledge of the complexes formed by N-coordinating ligands and Cu(II) ions is of relevance in understanding the interactions of this ion with biomolecules. Within this framework, we investigated Cu(II) complexation with mono- and polydentate ligands, such as ammonia, ethylenediamine (en), and phthalocyanine (Pc). The obtained Cu-N coordination distances were 2.02 A for [Cu(NH(3))(4)](2+), 2.01 A for [Cu(en)(2)](2+), and 1.95 A for CuPc. The shorter bond distance found for CuPc is attributed to the macrocyclic effect. In addition to the structure of the first shell, information on higher coordination shells of the chelate ligands could be extracted by EXAFS, thus allowing discrimination among the different coordination modes. This was possible due to the geometry of the complexes, where the absorbing Cu atoms are coplanar with the four N atoms forming the first coordination shell of the complex. For this reason multiple scattering contributions become relevant, thus allowing determination of higher shells. This knowledge has been used to gain information about the structure of the 1:2 complexes formed by Cu(II) ions with the amino acids histidine and glycine, both showing a high affinity for Cu(II) ions. The in-solution structure of these complexes, particularly that with histidine, is not clear yet, probably due to the various possible coordination modes. In this case the square-planar arrangements glycine-histamine and histamine-histamine as well as tetrahedral coordination modes have been considered. The obtained first-shell Cu-N coordination distance for this complex is 1.99 A. The results of the higher shells EXAFS analysis point to the fact that the predominant coordination mode is the so-called histamine-histamine one in which both histidine molecules coordinate Cu(II) cations through N atoms from the amino group and from the imidazole ring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.