Amid today’s stringent regulations and rising consumer awareness, failing to meet quality standards often results in health and financial compromises. In the lookout for solutions, the food industry has seen a surge in high-performing systems all along the production chain. By virtue of their wide-range designs, speed, and real-time data processing, the electronic tongue (E-tongue), electronic nose (E-nose), and near infrared (NIR) spectroscopy have been at the forefront of quality control technologies. The instruments have been used to fingerprint food properties and to control food production from farm-to-fork. Coupled with advanced chemometric tools, these high-throughput yet cost-effective tools have shifted the focus away from lengthy and laborious conventional methods. This special issue paper focuses on the historical overview of the instruments and their role in food quality measurements based on defined food matrices from the Codex General Standards. The instruments have been used to detect, classify, and predict adulteration of dairy products, sweeteners, beverages, fruits and vegetables, meat, and fish products. Multiple physico-chemical and sensory parameters of these foods have also been predicted with the instruments in combination with chemometrics. Their inherent potential for speedy, affordable, and reliable measurements makes them a perfect choice for food control. The high sensitivity of the instruments can sometimes be generally challenging due to the influence of environmental conditions, but mathematical correction techniques exist to combat these challenges.
Tomato, and its concentrate are important food ingredients with outstanding gastronomic and industrial importance due to their unique organoleptic, dietary, and compositional properties. Various forms of food adulteration are often suspected in the different tomato-based products causing major economic and sometimes even health problems for the farmers, food industry and consumers. Near infrared (NIR) spectroscopy and electronic tongue (e-tongue) have been lauded as advanced, high sensitivity techniques for quality control. The aim of the present research was to detect and predict relatively low concentration of adulterants, such as paprika seed and corn starch (0.5, 1, 2, 5, 10%), sucrose and salt (0.5, 1, 2, 5%), in tomato paste using conventional (soluble solid content, consistency) and advanced analytical techniques (NIR spectroscopy, e-tongue). The results obtained with the conventional methods were analyzed with univariate statistics (ANOVA), while the data obtained with advanced analytical methods were analyzed with multivariate methods (Principal component analysis (PCA), linear discriminant analysis (LDA), partial least squares regression (PLSR). The conventional methods were only able to detect adulteration at higher concentrations (5–10%). For NIRS and e-tongue, good accuracies were obtained, even in identifying minimal adulterant concentrations (0.5%). Comparatively, NIR spectroscopy proved to be easier to implement and more accurate during our evaluations, when the adulterant contents were estimated with R2 above 0.96 and root mean square error (RMSE) below 1%.
Nitrogen-rich adulterants in protein powders present sensitivity challenges to conventional combustion methods of protein determination which can be overcome by near Infrared spectroscopy (NIRS). NIRS is a rapid analytical method with high sensitivity and non-invasive advantages. This study developed robust models using benchtop and handheld spectrometers to predict low concentrations of urea, glycine, taurine, and melamine in whey protein powder (WPP). Effectiveness of scanning samples through optical glass and polyethylene bags was also tested for the handheld NIRS. WPP was adulterated up to six concentration levels from 0.5% to 3% w/w. The two spectrometers were used to obtain three datasets of 819 diffuse reflectance spectra each that were pretreated before linear discriminant analysis (LDA) and regression (PLSR). Pretreatment was effective and revealed important absorption bands that could be correlated with the chemical properties of the mixtures. Benchtop NIR spectrometer showed the best results in LDA and PLSR but handheld NIR spectrometers showed comparatively good results. There were high prediction accuracies and low errors attesting to the robustness of the developed PLSR models using independent test set validation. Both the plastic bag and optical glass gave good results with accuracies depending on the adulterant of interest and can be used for field applications.
Paprika powder is a spice of culinary importance in many homes but it's powdered form, has been targeted for fraudulent activities intended at consumer deception. Diverse methods have been used to investigate some of these adulterations but there is no report of paprika adulteration with corn flour, although it remains a suspicion. Technologies such as the near infrared spectroscopy (NIRS) possess non-invasive and rapid advantages that could be explored to monitor this type of adulteration. The study aimed to discriminate and quantify different levels of paprika powder adulterated with corn flour, using NIRS. Two authentic paprika types (DP and SP) were purchased from reputable sources in Hungary and artificially adulterated in the laboratory. Three repeats of each adulteration level (40%, 30%, 25%, 20%, 15%, 10%, 5%, 3%, 1%) were prepared and scanned with the Metri NIRS respectively, then, analysed with chemometrics: Linear discriminant analysis (LDA) and partial least squares regression (PLSR). LDA showed 100% recognition and prediction accuracies respectively when DP and SP were analyzed separately to discriminate different concentrations of paprika adulteration. LDA models with NIRS recognize corn flour adulteration with 95.55% and predict it with 95.02% accuracy irrespective of the paprika type used in this experiment. PLSR prediction of 40%, 30%, 25%, 20%, 15%, 10%, 5%, 3%, 1% corn flour adulteration yielded an R 2 CV of 0.98 (high accuracy) and a low RMSECV of 1.71 g/100g (low error). Near infrared as a non-invasive technique exhibited good potentials for paprika powder authentication when corn flour is used as an adulterant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.