Amid today’s stringent regulations and rising consumer awareness, failing to meet quality standards often results in health and financial compromises. In the lookout for solutions, the food industry has seen a surge in high-performing systems all along the production chain. By virtue of their wide-range designs, speed, and real-time data processing, the electronic tongue (E-tongue), electronic nose (E-nose), and near infrared (NIR) spectroscopy have been at the forefront of quality control technologies. The instruments have been used to fingerprint food properties and to control food production from farm-to-fork. Coupled with advanced chemometric tools, these high-throughput yet cost-effective tools have shifted the focus away from lengthy and laborious conventional methods. This special issue paper focuses on the historical overview of the instruments and their role in food quality measurements based on defined food matrices from the Codex General Standards. The instruments have been used to detect, classify, and predict adulteration of dairy products, sweeteners, beverages, fruits and vegetables, meat, and fish products. Multiple physico-chemical and sensory parameters of these foods have also been predicted with the instruments in combination with chemometrics. Their inherent potential for speedy, affordable, and reliable measurements makes them a perfect choice for food control. The high sensitivity of the instruments can sometimes be generally challenging due to the influence of environmental conditions, but mathematical correction techniques exist to combat these challenges.
Meat and fish chemical composition and sensory attributes are markers of quality that require innovative assessment methods as existing ones are rather technical, laborious, and expensive. Emerging trends of advanced technology instruments have been lauded in the pharmaceutical, cosmetic and food industries for their high sensitivity, customizability, rapidness and affordability. Common among these, are the electronic tongue (e-tongue) and electronic nose (e-nose) but their use for meat and fish quality, remains scanty and scattered. This paper aims to systematically discuss the developing trends, principles and the recent use of e-tongue and e-nose for quality measurements in fish and meat. From over 90 research papers, it was observed that an arsenal of chemometric tools have been pivotal in applying these instruments for rapid quantitative, qualitative and predictive analysis of some physical properties, chemical properties, storability and the authentication of meat and fish. Both instruments require no reagent (waste free analytical procedure) and have been lauded for precision and à accuracy but e-nose may be better suited for meat and fish assessments. Unlike the e-tongue, e-nose requires no liquid sample preparation and portable versions are promising for rapid remote analysis of meat and fish samples that can save cost on transferring carcass to laboratories.
Tokaj wines (Hungaricum) are botrytized wines acknowledged for the unique organoleptic properties bestowed by botrytized grape berries during production. Excluding these berries during wine production or manipulating the sugar content of low-grade wines to imitate high-grade wines are some recent suspicious activities that threaten the wine quality. Advanced methods such as spectroscopy and sensor-based devices have been lauded for rapid, reliable, and cost-effective analysis, but there has been no report of their application to monitor grape must concentrate adulteration in botrytized wines. The study aimed to develop models to rapidly discriminate lower grade Tokaj wines, "Forditas I" and "Forditas II," that were artificially adulterated with grape must concentrate to match the sugar content of high-grade Tokaj wines using an electronic tongue (e-tongue) and two near infrared spectrometers (NIRS). Data were evaluated with the following chemometrics: principal component analysis (PCA), discriminant analysis (LDA), partial least square regression (PLSR), and aquaphotomics (a novel approach). There was a noticeable pattern of separation in PCA for all three instruments and 100% classification of adulterated and nonadulterated wines in LDA using the e-tongue. Aquagrams from the aquaphotomics approach showed important water absorption bands capable of being markers of Tokaj wine quality. PLSR models showed coefficient of determination (R 2 CV) of 0.98 (e-tongue), 0.97 (benchtop NIRS), 0.87 (handheld NIRS), and low root mean squared errors of cross-validation. All three instruments could discriminate, classify, and predict grape must concentrate adulteration in Tokaj with a high accuracy and low error. The methods can be applied for routine quality checks of botrytized wines.Practical Application: Tokaj wines (Hungaricum) are botrytized wines acknowledged for the unique organoleptic properties bestowed by botrytized grape berries during production. Excluding these berries during wine production or manipulating the sugar content of low-grade wines to imitate high-grade wines are some recent suspicious activities that threaten the wine quality. Using advanced instruments, the electronic tongue, benchtop near infrared spectroscopy, and a handheld near infrared spectroscopy, we could discriminate, classify, and predict grape must concentrate adulteration in Tokaj with a high accuracy and low error. The models in our study can be applied for routine quality checks of botrytized wines.
Near-infrared spectroscopy (NIRS) has become a more popular approach for quantitative and qualitative analysis of feeds, foods and medicine in conjunction with an arsenal of chemometric tools. This was the foundation for the increased importance of NIRS in other fields, like genetics and transgenic monitoring. A considerable number of studies have utilized NIRS for the effective identification and discrimination of plants and foods, especially for the identification of genetically modified crops. Few previous reviews have elaborated on the applications of NIRS in agriculture and food, but there is no comprehensive review that compares the use of NIRS in the detection of genetically modified organisms (GMOs). This is particularly important because, in comparison to previous technologies such as PCR and ELISA, NIRS offers several advantages, such as speed (eliminating time-consuming procedures), non-destructive/non-invasive analysis, and is inexpensive in terms of cost and maintenance. More importantly, this technique has the potential to measure multiple quality components in GMOs with reliable accuracy. In this review, we brief about the fundamentals and versatile applications of NIRS for the effective identification of GMOs in the agricultural and food systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.