a b s t r a c tThe hypothesis of floating ice shelves covering the Arctic Ocean during glacial periods was developed in the 1970s. In its most extreme form, this theory involved a 1000 m thick continuous ice shelf covering the Arctic Ocean during Quaternary glacial maxima including the Last Glacial Maximum (LGM). While recent observations clearly demonstrate deep ice grounding events in the central Arctic Ocean, the ice shelf hypothesis has been difficult to evaluate due to a lack of information from key areas with severe sea ice conditions. Here we present new data from previously inaccessible, unmapped areas that constrain the spatial extent and timing of marine ice sheets during past glacials. These data include multibeam swath bathymetry and subbottom profiles portraying glaciogenic features on the Chukchi Borderland, southern Lomonosov Ridge north of Greenland, Morris Jesup Rise, and Yermak Plateau. Sediment cores from the mapped areas provide age constraints on the glaciogenic features. Combining these new geophysical and geological data with earlier results suggests that an especially extensive marine ice sheet complex, including an ice shelf, existed in the Amerasian Arctic Ocean during Marine Isotope Stage (MIS) 6. From a conceptual oceanographic model we speculate that the cold halocline of the Polar Surface Water may have extended to deeper water depths during MIS 6 inhibiting the warm Atlantic water from reaching the Amerasian Arctic Ocean and, thus, creating favorable conditions for ice shelf development. The hypothesis of a continuous 1000 m thick ice shelf is rejected because our mapping results show that several areas in the central Arctic Ocean substantially shallower than 1000 m water depth are free from glacial influence on the seafloor.
Oscillations in ice sheet extent during early and middle Miocene are intermittently preserved in the sedimentary record from the Antarctic continental shelf, with widespread erosion occurring during major ice sheet advances, and open marine deposition during times of ice sheet retreat. Data from seismic reflection surveys and drill sites from Deep Sea Drilling Project Leg 28 and International Ocean Discovery Program Expedition 374, located across the present-day middle continental shelf of the central Ross Sea (Antarctica), indicate the presence of expanded early to middle Miocene sedimentary sections. These include the Miocene climate optimum (MCO ca. 17−14.6 Ma) and the middle Miocene climate transition (MMCT ca. 14.6−13.9 Ma). Here, we correlate drill core records, wireline logs and reflection seismic data to elucidate the depositional architecture of the continental shelf and reconstruct the evolution and variability of dynamic ice sheets in the Ross Sea during the Miocene. Drill-site data are used to constrain seismic isopach maps that document the evolution of different ice sheets and ice caps which influenced sedimentary processes in the Ross Sea through the early to middle Miocene. In the early Miocene, periods of localized advance of the ice margin are revealed by the formation of thick sediment wedges prograding into the basins. At this time, morainal bank complexes are distinguished along the basin margins suggesting sediment supply derived from marine-terminating glaciers. During the MCO, biosiliceous-bearing sediments are regionally mapped within the depocenters of the major sedimentary basin across the Ross Sea, indicative of widespread open marine deposition with reduced glacimarine influence. At the MMCT, a distinct erosive surface is interpreted as representing large-scale marine-based ice sheet advance over most of the Ross Sea paleo-continental shelf. The regional mapping of the seismic stratigraphic architecture and its correlation to drilling data indicate a regional transition through the Miocene from growth of ice caps and inland ice sheets with marine-terminating margins, to widespread marine-based ice sheets extending across the outer continental shelf in the Ross Sea.
Abstract. Modeling studies have shown that the continental-scale ice sheets in North America and Eurasia in the last glacial cycle had a large influence on the atmospheric circulation and thus yielded a climate distinctly different from the present. However, to what extent the two ice sheets influenced each others' growth trajectories remains largely unexplored. In this study we investigate how an ice sheet in North America influences the downstream evolution of the Eurasian ice sheet, using a thermomechanical ice-sheet model forced by climate data from atmospheric snapshot experiments of three distinctly different phases of the last glacial cycle: the Marine Isotope Stages 5b, 4, and 2 (Last Glacial Maximum – LGM). Owing to the large uncertainty associated with glacial changes in the Atlantic meridional overturning circulation, each atmospheric snapshot experiment was conducted using two distinctly different ocean heat transport representations. Our results suggest that changes in the North American paleo-topography may have largely controlled the zonal distribution of the Eurasian ice sheet. In the MIS4 and LGM experiments, the Eurasian ice sheet migrates westward towards the Atlantic sector – largely consistent with geological data and contemporary ice-sheet reconstructions – due to a low wave number stationary wave response, which yields a cooling in Europe and a warming in northeastern Siberia. The expansion of the North American ice sheet between MIS4 and the LGM amplifies the Siberian warm anomaly, which limits the glaciation there and may therefore help explain the progressive westward migration of the Eurasian ice sheet in this time period. The ocean heat transport only has a small influence on the stationary wave response to the North American glacial topography; however, because temperature anomalies have a smaller influence on an ice sheet's ablation in a colder climate than in a warmer one, the impact of the North American glacial topography on the Eurasian ice-sheet evolution is reduced for colder surface conditions in the North Atlantic. While the Eurasian ice sheet in the MIS4 and the LGM experiments appears to be in equilibrium with the simulated climate conditions, the MIS5b climate forcing is too warm to grow an ice sheet in Eurasia. First-order sensitivity experiments suggest that the MIS5b ice sheet was established during preceding colder stages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.