Recent reports have indicated a decrease in semen quality of men in some countries, and suggested regional differences. A study was undertaken of semen samples from 1082 fertile men from four European cities (Copenhagen, Denmark; Paris, France; Edinburgh, Scotland; and Turku, Finland). Semen analysis was standardized, inter-laboratory differences in assessment of sperm concentration were evaluated, and morphology assessment centralized. Lowest sperm concentrations and total counts were detected for Danish men, followed by French and Scottish men. Finnish men had the highest sperm counts. Men from Edinburgh had the highest proportion of motile spermatozoa, followed by men from Turku, Copenhagen and Paris. Only the differences between Paris/Edinburgh and Paris/Turku were statistically significant (P < 0.003 and P < 0.002 respectively). No significant differences in morphology were detected. A general seasonal variation in sperm concentration (summer 70% of winter) and total sperm count (summer 72% of winter) was detected. Semen quality of a 'standardized' man (30 years old, fertile, ejaculation abstinence of 96 h) were estimated. Typically, sperm concentrations (x 10(6)/ml) for winter/summer were: Turku 132/93; Edinburgh 119/84; Paris 103/73; and Copenhagen 98/69. These differences in semen quality may indicate different environmental exposures or lifestyle changes in the four populations. However, it remains to be seen whether such changes can account for these differences. These data may also serve as a reference point for future studies on time trends in semen quality in Europe.
The present study indicated that the detailed assessment of sperm abnormalities is a useful biomarker of the effect of various external factors which may qualitatively affect human spermatogenesis.
Recent reports have indicated a decrease in semen quality of men in some countries, and suggested regional differences. A study was undertaken of semen samples from 1082 fertile men from four European cities (Copenhagen, Denmark; Paris, France; Edinburgh, Scotland; and Turku, Finland). Semen analysis was standardized, inter‐ laboratory differences in assessment of sperm concentration were evaluated, and morphology assessment centralized. Lowest sperm concentrations and total counts were detected for Danish men, followed by French and Scottish men. Finnish men had the highest sperm counts. Men from Edinburgh had the highest proportion of motile spermatozoa, followed by men from Turku, Copenhagen and Paris. Only the differences between Paris/Edinburgh and Paris/ Turku were statistically significant (P < 0.003 and P 0.002 respectively). No significant differences in morphology were detected. A general seasonal variation in sperm concentration (summer 70% of winter) and total sperm count (summer 72% of winter) was detected. Semen quality of a ‘standardized’ man (30 years old, fertile, ejaculation abstinence of 96 h) were estimated. Topically, sperm concentrations (x 106/ml) for winter/summer were: Turku 132/93; Edinburgh 119/84; Paris 103/73; and Copenhagen 98/69. These differences in semen quality may indicate different environmental exposures or lifestyle changes in the four populations. However, it remains to be seen whether such changes can account for these differences. These data may also serve as a reference point for future studies on time trends in semen quality in Europe.
The aim of the present study was to assess variability in the evaluation of human sperm concentration, motility and vitality. Technicians and biologists from 10 teams involved in multicentre studies on semen quality attended the same laboratory, each team using its own methods and equipment to analyse the same semen samples. Inter-individual variability was assessed from 17 fresh semen samples of varying quality. Intra-individual variability was assessed from pools of frozen samples for sperm concentration and motility and stained smears for vitality with three blind evaluations by sample and smear. The mean inter-individual coefficients of variation were 22.9, 21.8 and 17.5% for sperm concentration, motility and vitality respectively. There was no statistical difference among participants for sperm concentration assessment, but significant differences for both motility and vitality (both P: < 0.05). The mean intra-individual coefficients of variation were 15.8, 26.2 and 13.1% for sperm concentration, motility and vitality respectively, with marked differences between expert and novice participants: concentration 9.8% versus 28.0%; motility 22.8% versus 33.0%; and vitality 10.0% versus 19.3%. The present data confirm the need for external quality control schemes for diagnostic purposes, and indicate their utmost importance in multicentre studies on semen quality.
There has been a growing interest over the past few years in the impact of male nutrition on fertility. Infertility has been linked to male overweight or obesity, and conventional semen parameter values seem to be altered in case of high body mass index (BMI). A few studies assessing the impact of BMI on sperm DNA integrity have been published, but they did not lead to a strong consensus. Our objective was to explore further the relationship between sperm DNA integrity and BMI, through a 3-year multicentre study. Three hundred and thirty male partners in subfertile couples were included. Using the terminal uridine nick-end labelling (TUNEL) assay, we observed an increased rate of sperm DNA damage in obese men (odds ratio (95% confidence interval): 2.5 (1.2-5.1)).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.