Ectotherm thermal tolerance is critical to species distribution, but at present the physiological underpinnings of heat tolerance remain poorly understood. Mitochondrial function is perturbed at critically high temperatures in some ectotherms, including insects, suggesting that heat tolerance of these animals is linked to failure of oxidative phosphorylation (OXPHOS) and/or ATP production. To test this hypothesis we measured mitochondrial oxygen consumption rates in six Drosophila species with different heat tolerance using high-resolution respirometry. Using a substrate-uncoupler-inhibitor titration protocol we examined specific steps of the electron transport system to study how temperatures below, bracketing and above organismal heat limits affected mitochondrial function and substrate oxidation. At benign temperatures (19 and 30°C), complex I-supported respiration (CI-OXPHOS) was the most significant contributor to maximal OXPHOS. At higher temperatures (34, 38, 42 and 46°C), CI-OXPHOS decreased considerably, ultimately to very low levels at 42 and 46°C. The enzymatic catalytic capacity of complex I was intact across all temperatures and accordingly the decreased CI-OXPHOS is unlikely to be caused directly by hyperthermic denaturation/inactivation of complex I. Despite the reduction in CI-OXPHOS, maximal OXPHOS capacities were maintained in all species, through oxidation of alternative substrates; proline, succinate and, particularly, glycerol-3-phosphate, suggesting important mitochondrial flexibility at temperatures exceeding the organismal heat limit. Interestingly, this failure of CI-OXPHOS and compensatory oxidation of alternative substrates occurred at temperatures that tended to correlate with species heat tolerance, such that heat-tolerant species could defend “normal” mitochondrial function at higher temperatures than sensitive species. Future studies should investigate why CI-OXPHOS is perturbed and how this potentially affects ATP production rates.
The thermal sensitivity of ectotherms is largely dictated by the impact of temperature on cellular bioenergetics, particularly on mitochondrial functions. As the thermal sensitivity of bioenergetic pathways depends on the structural and kinetic properties of its component enzymes, optimization of their collective function to different thermal niches is expected to have occurred through selection. In the present study, we sought to characterize mitochondrial phenotypic adjustments to thermal niches in eight ray-finned fish species occupying a wide range of thermal habitats by comparing the activities of key mitochondrial enzymes in their hearts. We measured the activity of four enzymes that control substrate entrance into the tricarboxylic acid (TCA) cycle: pyruvate kinase (PK), pyruvate dehydrogenase complex (PDHc), carnitine palmitoyltransferase (CPT), and hydroxyacyl-CoA dehydrogenase (HOAD). We also assayed enzymes of the electron transport system (ETS): complexes I, II, I + III, and IV. Enzymes were assayed at five temperatures (5, 10, 15, 20, and 25°C). Our results showed that the activity of CPT, a gatekeeper of the fatty acid pathway, was higher in the cold-water fish than in the warmer-adapted fish relative to the ETS (complexes I and III) when measured close to the species optimal temperatures. The activity of HOAD showed a similar pattern relative to CI + III and thermal environment. By contrast, PDHc and PK did not show the similar patterns with respect to CI + III and temperature. Cold-adapted species had high CIV activities compared to those of upstream complexes (I, II, I + III) whereas the converse was true for warm-adapted species. Our findings reveal a significant variability of heart mitochondrial organization among species that can be linked to temperature adaptation. Cold-adapted fish do not appear to compensate for PDHc activity but likely adjust fatty acids oxidation through higher activities of CPT and HOAD relative to complexes I + III.
Frequent heat waves caused by climate change can cause physiological stress in many animals, particularly in sessile ectotherms such as bivalves. Most studies characterizing thermal stress in bivalves focus on evaluating the responses to a single stress event. This does not accurately reflect the reality faced by bivalves which are often subject to intermittent heat waves. Here, we investigated the effect of intermittent heat stress on mitochondrial functions of Eastern oyster Crassostrea virginica which play a key role in setting ectotherms’ thermal tolerance. Specifically, we measured changes in mitochondrial oxygen consumption and H2O2 emission rates before, during and after intermittent 7.5°C heat shocks in oysters acclimated to 15°C and 22.5°C. Our results showed that oxygen consumption was impaired following the first heat shock at both acclimation temperatures. After the second heat shock, results for oysters acclimated to 15°C indicated a return to normal. However, oysters acclimated to 22.5°C struggled more with the compounding effects of intermittent heat shocks as denoted with an increase contribution of FAD-linked substrates to mitochondrial respiration as well as high levels of H2O2 emission rates. However, both acclimated populations showed signs of potential recovery ten days after the second heat shock, reflecting a surprising resilience to heat waves by C. virginica. Thus, this study highlights the important role of acclimation in oyster's capacity to weather intermittent heat shock.
Ectotherm thermal tolerance is critical to species distribution, but at present the physiological underpinnings of heat tolerance remain poorly understood. Mitochondrial function is perturbed at critically high temperatures in some ectotherms, including insects, suggesting that heat tolerance of these animals is linked to failure of oxidative phosphorylation (OXPHOS) and/or ATP production. To test this hypothesis we measured mitochondrial oxygen consumption rates in six Drosophila species with different heat tolerance using high-resolution respirometry. Using a substrate-uncoupler-inhibitor titration protocol we examined specific steps of the electron transport system to study how temperatures below, bracketing and above organismal heat limits affected mitochondrial function and substrate oxidation. At benign temperatures (19 and 30°C), complex I-supported respiration (CI-OXPHOS) was the most significant contributor to maximal OXPHOS. At higher temperatures (34, 38, 42 and 46°C), CI-OXPHOS decreased considerably, ultimately to very low levels at 42 and 46°C. The enzymatic catalytic capacity of complex I was intact across all temperatures and accordingly the decreased CI-OXPHOS is unlikely to be caused directly by hyperthermic denaturation/inactivation of complex I. Despite the reduction in CI-OXPHOS, maximal OXPHOS capacities were maintained in all species, through oxidation of alternative substrates; proline, succinate and, particularly, glycerol-3-phosphate, suggesting important mitochondrial flexibility at temperatures exceeding the organismal heat limit. Interestingly, this compensatory oxidation of alternative substrates occurred at temperatures that tended to correlate with species heat tolerance, such that heat-tolerant species could defend “normal” mitochondrial function at higher temperatures than sensitive species. Future studies should investigate why CI-OXPHOS is perturbed and how this potentially affects ATP production rates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.