Electroretinography, using laboratory animals, is a commonly used technique for determining the retinal toxicity of chemical agents. In this paper, guidelines for performing this test are provided. The physiologic basis for visual testing is presented with attention to inter-species differences. Technical aspects of animal recordings are reviewed, including animal preparation, stimulation, signal conditioning, recording and data analysis. Finally, suggested protocols for recording in diurnal and nocturnal species are presented.
The i-wave, a post b-wave component of the human photopic electroretinogram (ERG), is claimed to originate at the level of the retinal ganglion cells (RGC) or more distally. We investigated whether this wave is a feature common to all species. Photopic ERGs were obtained from the following species: Beagle dog, European cat, New Zealand white rabbit, Göttingen minipig, Cynomolgus monkey, Sprague-Dawley and brown Norway rats, Hartley guinea pig, and CD1 and C57BL6 mice. Results were compared with those obtained from normal human subjects. Except for rats and mice, all species yielded a well-demarcated i-wave, easily identifiable and separated from the a-b-wave complex by approximately 20 ms. Our sample suggests that the i-wave is a feature common to the photopic ERG of most species including humans. In view of its suggested origin, the i-wave would offer a unique opportunity to test, with the flash ERG, the functional integrity of the retinal ganglion cells in animals where use of a pattern stimulus is not always easily obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.