Submarine canyons are major geomorphic features of continental margins around the world. Several recent multidisciplinary projects focused on the study of canyons have considerably increased our understanding of their ecological role, the goods, and services they provide to human populations, and the impacts that human activities have on their overall ecological condition. Pressures from human activities include fishing, dumping of land-based mine tailings, and oil and gas extraction. Moreover, hydrodynamic processes of canyons enhance the down-canyon transport of litter. The effects of climate change may modify the intensity of currents. This potential hydrographic change is predicted to impact the structure and functioning of canyon communities as well as affect nutrient supply to the deep-ocean ecosystem. This review not only identifies the ecological status of canyons, and current and future issues for canyon conservation, but also highlights the need for a better understanding of anthropogenic impacts on canyon ecosystems and proposes other research required to inform management measures to protect canyon ecosystems.
The Pélagiques Gascogne (PELGAS) integrated survey has been developed by a multidisciplinary team of Ifremer and La Rochelle University scientists since 2000, joined by commercial fishermen in 2007. Its initial focus was to assess the biomass and predict the recruitment success of anchovy in the Bay of Biscay in spring. Taking advantage of the space and versatility of R/V Thalassa II, sampling has been progressively extended to other ecosystem components. PELGAS therefore further developed the second objective of monitoring and studying the dynamic and diverse Biscay pelagic ecosystem in springtime. The PELGAS survey model has allowed for the establishment of a long-term time-series of spatially-explicit data of the Bay of Biscay pelagic ecosystem since the year 2000. Main sampled components of the targeted ecosystem are: hydrology, phytoplankton, mesozooplankton, fish and megafauna. The survey now provides two main ecosystem products: standard raster maps of ecosystem parameters, and a time series dataset of indicators of the Bay of Biscay pelagic ecosystem state. They are used to inform fish stock and ecosystem-based management, and support ecosystem research. The present paper introduces the PELGAS survey, as a practical example of an integrated, vessel-based, ecosystem survey. The evolution of the PELGAS scientific team and sampling protocols are presented and analysed, to outline factors crucial to the success of the survey. Data and results derived from PELGAS are reviewed, to exemplify scientific questions that can be tackled by integrated ecosystem survey data. Advantages and challenges of the survey are discussed and put into the context of marine ecosystem surveys in the European Marine Strategy Framework Directive and the Please note that this is an author-produced PDF of an article accepted for publication following peer review. The definitive publisher-authenticated version is available on the publisher Web site. Common Fisheries Policy. Highlights ► The PELGAS integrated survey conducted since 2000 in spring in the Bay of Biscay is presented. ► PELGAS objectives have switched from the study of the anchovy stock status to ecosystem monitoring. ► Spatially-explicit data have been collected of the main pelagic ecosystem components since 2000. ► Multidisciplinary collaborative working and enough vessel space were critical success factors. ► Finding relevant common scales is essential to analyse ecosystem data within or across compartments.
Blooms of the benthic toxic dinoflagellate genus Ostreopsis have been recorded more frequently during the last two decades, particularly in warm temperate areas such as the Mediterranean Sea. The proliferation of Ostreopsis species may cause deleterious effects on ecosystems and can impact human health through skin contact or aerosol inhalation. In the eastern Atlantic Ocean, the toxic O. cf. ovata has not yet been reported to the north of Portugal, and the only species present further north was O. cf. siamensis, for which the toxic risk is considered low. During summer blooms of unidentified Ostreopsis species on the French Basque coast (Atlantic) in 2020 and 2021, people suffered from irritations and respiratory disorders, and the number of analyzed cases reached 674 in 2021. In order to investigate the causes, sampling was carried out during summer 2021 to (i) taxonomically identify Ostreopsis species present using a molecular approach, (ii) isolate strains from the bloom and culture them, and (iii) characterize the presence of known toxins which may be involved. For the first time, this study reports the presence of both O. cf. siamensis and O. cf. ovata, for which the French Basque coast is a new upper distribution limit. Furthermore, the presence of ovatoxins a, b, c, and d in the environmental sample and in a cultivated strain in culture confirmed the toxic nature of the bloom and allowed identifying O. cf. ovata as the producer. The present data identify a new health risk in the area and highlight the extended distribution of some harmful dinoflagellates, presumably in relation to climate change.
-Bivalves are important components of benthic marine and freshwater ecosystems throughout the world. One of the most exploited bivalves used for human consumption is manila clam (Venerupis philippinarum). In Arcachon Bay (SW France), commercial fishers and scientists have developed a monitoring survey to estimate clam stocks to assist in implementing a sustainable management strategy. The survey design that is currently used is based on standard stratified random sampling (StRS). The survey has been undertaken every 2 years since 2006. Each survey costs approximately €50 000, with funding provided by ∼20% of the commercial fishers. The survey is quite expensive, given that this resource is managed mostly at a regional level. In 2016 for instance, the survey was not done because of a shortfall in funds to support it. Recent studies on survey designs have focused on new developments that allow for higher statistical efficiency (lower sampling error) coupled with lower survey effort. Among these is the spatially balanced generalized random tessellation stratified (GRTS) design. The aim of this study is to compare the performance of the common StRS method with the GRTS design. To do this, we created a semi-virtual clam population by extrapolating the 2012 field survey results in the whole bay and simulated survey events with the two designs. We then assessed the two survey designs using three threshold precision levels (5%, 10% and 20% precision) for the two estimators of interest (biomass and abundance). We recommend the use of the GRTS design for clam surveys in Arcachon Bay. To achieve the same level of precision, GRTS requires less survey effort than StRS.
cited By (since 1996)0International audienceIn the context of the Common Fisheries Policy reform, the need for decreasing discards has been highlighted in discussions on the implementation of a discard ban. While most of the research has focused on the quantification of discards by species and métier, identification and quantification of the causes of discards have received little attention. This study presents the results of on-board surveys conducted in the Southern Bay of Biscay fleets of netters and longliners. A large variability of discards was observed. It is also shown that in these passive gear fisheries the main reasons for discarding put forward by fishermen are, firstly, market-related and, secondly, quality-related; discards related to the application of regulations are minor. The results therefore illustrate that decisions to discard can also occur in highly selective fisheries because of economic constraint and the results also show that a part is discarded alive. © 2014 Elsevier Ltd
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.