Exercise intolerance is the first symptom of heart disease. Yet an objective and standardised method in canine cardiology to assess exercise capacity in a clinical setting is lacking. In contrast, exercise testing is a powerful diagnostic tool in humans, providing valuable information on prognosis and impact of therapeutic intervention. To investigate whether an exercise test reveals differences between dogs with early stage mitral regurgitation (MR) and dogs without cardiac disease, 12 healthy beagles (healthy group, HG) and 12 dogs with presymptomatic MR (CHIEF B1 / B2, patient group, PG) underwent a six-stage submaximal exercise test (ET) on a motorised treadmill. They trotted in their individual comfort speed for three minutes per stage, first without incline, afterwards increasing it by 4% for every subsequent stage. Blood samples were taken at rest and during two 3-minute breaks in the course of the test. Further samples were taken after the completion of the exercise test and again after a 3-hour recovery period. Measured parameters included heart rate, lactate and the cardiac biomarkers N-terminal pro-B-Type natriuretic peptide and cardiac Troponin I. The test was performed again under the same conditions in the same dogs three weeks after the first trial to evaluate individual repeatability. Cardiac biomarkers increased significantly in both HG and PG in the course of the test. The increase was more pronounced in CHIEF B1 / B2 dogs than in the HG. N-terminal pro-B-Type natriuretic peptide increased from 435 ± 195 to 523 ± 239 pmol/L (HG) and from 690 to 815 pmol/L (PG). cTnI increased from 0.020 to 0.024 ng/mL (HG) and from 0.06 to 0.08 ng/ml (PG). The present study provides a method to assess exercise-induced changes in cardiac biomarkers under clinical conditions. The increase of NT-proBNP and cTnI is more pronounced in dogs with early-stage MR than in healthy dogs. Results indicate that measuring the parameters before and after exercise is adequate and taking blood samples between the different stages of the ET does not provide additional information. Also, stress echocardiography was inconclusive. It can be concluded that exercise testing, especially in combination with measuring cardiac biomarkers, could be a helpful diagnostic tool in canine cardiology.
Mammary neoplasms are the tumors most affecting female dogs and women. Formalin-fixed, paraffin-embedded (FFPE) tissues are an invaluable source of archived biological material. Fresh frozen (FF) tissue is considered ideal for gene expression analysis. However, strategies based on FFPE material offer several advantages. Branched-DNA assays permit a reliable and fast workflow when analyzing gene expression. The aim of this study was to assess the comparability of the branched-DNA assay when analyzing certain gene expression patterns between FF and FFPE samples in canine mammary tumors. RNA was isolated from 109 FFPE samples and from 93 FF samples of different canine mammary tissues. Sixteen (16) target genes (Tp53; Myc; HMGA1; Pik3ca; Mcl1; MAPK3; FOXO3; PTEN; GATA4; PFDN5; HMGB1; MAPK1; BRCA2; BRCA1; HMGA2; and Her2) were analyzed via branched-DNA assay (b-DNA). ACTB, GAPDH, and HPRT1 were used as data normalizers. Overall, the relative gene expression of the two different origins of samples showed an agreement of 63%. Still, care should be taken, as FFPE specimens showed lower expression of the analyzed targets when compared to FF samples. The fact that the gene expression in FFPE proved to be lower than in FF specimens is likely to have been caused by the effect of storage time. ACTB had the best performance as a data normalizer.
Immunohistochemistry (IHC) is currently considered the method of choice for steroid hormone receptor status evaluation in human breast cancer and, therefore, it is commonly utilized for assessing canine mammary tumors. In case of low hormone receptor expression, IHC is limited and thus is complemented by molecular analyses. In the present study, a multiplex bDNA assay was evaluated as a method for hormone receptor gene expression detection in canine mammary tissues. Estrogen receptor (ESR1), progesterone receptor (PGR), prolactin receptor (PRLR) and growth hormone receptor (GHR) gene expressions were evaluated in neoplastic and non-neoplastic canine mammary tissues. A set of 119 fresh frozen and 180 formalin-fixed, paraffin-embedded (FFPE) was comparatively analyzed and used for assay evaluation. Furthermore, a possible association between the hormone receptor expression in different histological subtypes of canine malignant mammary tumors and the castration status, breed and invasive growth of the tumor were analyzed. The multiplex bDNA assay proved to be more sensitive for fresh frozen specimens. Hormone receptor expression found was significantly decreased in malignant mammary tumors in comparison to non-neoplastic tissue and benign mammary tumors. Among the histological subtypes the lowest gene expression levels of ESR1, PGR and PRLR were found in solid, anaplastic and ductal carcinomas. In summary, the evaluation showed that the measurement of hormone receptors with the multiplex bDNA assay represents a practicable method for obtaining detailed quantitative information about gene expression in canine mammary tissue for future studies. Still, comparison with IHC or quantitative real-time PCR is needed for further validation of the present method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.