Exercise intolerance is the first symptom of heart disease. Yet an objective and standardised method in canine cardiology to assess exercise capacity in a clinical setting is lacking. In contrast, exercise testing is a powerful diagnostic tool in humans, providing valuable information on prognosis and impact of therapeutic intervention. To investigate whether an exercise test reveals differences between dogs with early stage mitral regurgitation (MR) and dogs without cardiac disease, 12 healthy beagles (healthy group, HG) and 12 dogs with presymptomatic MR (CHIEF B1 / B2, patient group, PG) underwent a six-stage submaximal exercise test (ET) on a motorised treadmill. They trotted in their individual comfort speed for three minutes per stage, first without incline, afterwards increasing it by 4% for every subsequent stage. Blood samples were taken at rest and during two 3-minute breaks in the course of the test. Further samples were taken after the completion of the exercise test and again after a 3-hour recovery period. Measured parameters included heart rate, lactate and the cardiac biomarkers N-terminal pro-B-Type natriuretic peptide and cardiac Troponin I. The test was performed again under the same conditions in the same dogs three weeks after the first trial to evaluate individual repeatability. Cardiac biomarkers increased significantly in both HG and PG in the course of the test. The increase was more pronounced in CHIEF B1 / B2 dogs than in the HG. N-terminal pro-B-Type natriuretic peptide increased from 435 ± 195 to 523 ± 239 pmol/L (HG) and from 690 to 815 pmol/L (PG). cTnI increased from 0.020 to 0.024 ng/mL (HG) and from 0.06 to 0.08 ng/ml (PG). The present study provides a method to assess exercise-induced changes in cardiac biomarkers under clinical conditions. The increase of NT-proBNP and cTnI is more pronounced in dogs with early-stage MR than in healthy dogs. Results indicate that measuring the parameters before and after exercise is adequate and taking blood samples between the different stages of the ET does not provide additional information. Also, stress echocardiography was inconclusive. It can be concluded that exercise testing, especially in combination with measuring cardiac biomarkers, could be a helpful diagnostic tool in canine cardiology.
In Western tonal music, voice leading (VL) and harmony are two central concepts influencing whether a musical sequence is perceived as well-formed. However, experimental studies have primarily focused on the effect of harmony on the cognitive processing of polyphonic music. The additional effect of VL remains unknown, despite music theory suggesting VL to be tightly connected to harmony. therefore, the aim of this study was to investigate and compare the effects of both VL and harmony on listener expectations. Using a priming paradigm and a choice reaction time task, participants (n = 34) were asked to indicate whether the final chord in a sequence had a different timbre than the preceding ones (cover task), with the experimental conditions being good and poor VL or harmony, respectively. An analysis with generalised mixed effects models revealed a significant influence of both VL and harmony on reaction times (RTs). Moreover, pairwise comparison showed significantly faster RTs when VL was good as compared to both VL and harmony being poor, which was not the case when only harmony was good. this study thus provides evidence for the additional importance of VL for the processing of Western polyphonic music.
Background Exercise testing in conjunction with measurement of cardiac biomarkers NT-proBNP and cTnI is a useful tool for monitoring the effect of treatment on cardiac patients. Administering Pimobendan in dogs with degenerative mitral valve disease (DMVD) and cardiomegaly results in delaying the onset of clinical symptoms and prolonging life. Its effect in dogs with DMVD without cardiomegaly has not been well examined. The aim of the current study was to investigate the effect of administering Pimobendan in dogs with DMVD without cardiomegaly using exercise testing in conjunction with measuring cardiac biomarkers in addition to echocardiography. Twenty-one dogs with asymptomatic DMVD without echocardiographic signs of cardiomegaly participated in a randomised, double-blinded trial. Dogs were divided into a Pimobendan-group ( n = 11) and a placebo-group ( n = 10) in a double-blinded study design and underwent a standardised submaximal exercise test (SSET). One dog in the Pimobendan-group was retrospectively removed from the study after being diagnosed with Leishmaniosis. Cardiac biomarkers NT-proBNP and cTnI were measured before and after exercise. Follow-up appointments were performed at days 90 and 180. Results Dogs in the Pimobendan-group had significantly lower post-exercise NT-proBNP-levels after being administered Pimobendan than at the beginning of the study. They also had lower pre- and post-exercise-NT-proBNP-levels than those dogs in the placebo-group. There was neither a significant difference regarding the measured cTnI levels nor an increase in cTnI between the groups at any time. Conclusions Pimobendan lowers NT-proBNP in dogs with presymptomatic mitral valve disease without cardiomegaly before and after submaximal exercise. This indicates a reduction in cardiac wall stress. If dogs with asymptomatic DMVD without cardiomegaly benefit from treatment with Pimobendan (for example, through a longer survival time) warrants further investigation.
Pimobendan has gained enormous importance in the treatment of mitral valve disease in dogs. The current consensus statement of the American College of Veterinary Internal Medicine (ACVIM) recommends a treatment for dogs with symptomatic disease and dogs with asymptomatic disease with radiographic and echocardiographic signs of cardiomegaly. To investigate whether these dogs also benefit from a therapy with pimobendan, 21 dogs with mitral valve disease ACVIM B1 underwent a standardized submaximal exercise test on a treadmill. In this double-blinded and randomized study, the animals were divided into two groups, one receiving pimobendan and the other a placebo. At the first visit and at every follow-up appointment (at days 90 and 180), heart rate during the complete exercise test and lactate before and after running were measured. In addition to this, a questionnaire was completed by the dogs’ owners and all dogs were given an echocardiographic examination to detect any changes and to observe if the disease had progressed. Due to the diagnosis of leishmaniosis, one dog in the pimobendan group was retrospectively removed from the study so that 20 dogs were included for statistical analysis. No differences were observed at any time between the pimobendan-group and the placebo-group regarding heart rate. At day 180, the increase in lactate after exercise was significantly lower than in the placebo-group. The increase in the pimobendan-group at day 180 was lower than at day 90. Most of the dog owners from the pimobendan-group declared that their dogs were more active at day 90 (6/10) and at day 180 (8/10), while most dog owners from the placebo-group observed no changes regarding activity at day 90 (8/10) and day 180 (6/10). It can be concluded that the results of this study indicate that some dogs with mitral valve disease ACVIM B1 might benefit from a therapy with pimobendan.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.