Highlights d NTD-targeting antibodies are a key part of immunity to SARS-CoV-2 d NTD neutralizing antibodies target a single antigenic site of vulnerability d Neutralizing NTD antibodies protect hamsters from SARS-CoV-2 challenge d Variants of concern have mutations in the NTD that escape neutralization
Efficient therapeutic options are needed to control the spread of SARS-CoV-2 that has caused more than 922,000 fatalities as of September 13th, 2020. We report the isolation and characterization of two ultrapotent SARS-CoV-2 human neutralizing antibodies (S2E12 and S2M11) that protect hamsters against SARS-CoV-2 challenge. Cryo-electron microscopy structures show that S2E12 and S2M11 competitively block ACE2 attachment and that S2M11 also locks the spike in a closed conformation by recognition of a quaternary epitope spanning two adjacent receptor-binding domains. Cocktails including S2M11, S2E12 or the previously identified S309 antibody broadly neutralize a panel of circulating SARS-CoV-2 isolates and activate effector functions. Our results pave the way to implement antibody cocktails for prophylaxis or therapy, circumventing or limiting the emergence of viral escape mutants.
An ideal anti-SARS-CoV-2 antibody would resist viral escape [1][2][3] , have activity against diverse SARS-related coronaviruses (sarbecoviruses) [4][5][6][7] , and be highly protective through viral neutralization [8][9][10][11] and effector functions 12,13 . Understanding how these properties relate to each other and vary across epitopes would aid development of antibody therapeutics and guide vaccine design. Here, we comprehensively characterize escape, breadth, and potency across a panel of SARS-CoV-2 antibodies targeting the receptor-binding domain (RBD). Despite a tradeoff between in vitro neutralization potency and breadth of sarbecovirus binding, we identify neutralizing antibodies with exceptional sarbecovirus breadth and a corresponding resistance to SARS-CoV-2 escape. One of these antibodies, S2H97, binds with high affinity across all sarbecovirus clades to a previously undescribed cryptic epitope and prophylactically protects hamsters from viral challenge. Antibodies targeting the ACE2 receptor binding motif (RBM) typically have poor breadth and are readily escaped by mutations despite high neutralization potency. Nevertheless, we characterize one potent RBM antibody (S2E12 8 ) with breadth across sarbecoviruses related to SARS-CoV-2 and a high barrier to viral escape. These data highlight principles underlying variation in escape, breadth, and potency among antibodies targeting the RBD, and identify epitopes and features to prioritize for therapeutic development against the current and potential future pandemics.The most potently neutralizing antibodies to SARS-CoV-2-including those in clinical use 14 and dominant in polyclonal sera 15,16 -target the spike receptor-binding domain (RBD). Mutations in the RBD that reduce binding by antibodies have emerged among SARS-CoV-2 variants [17][18][19][20][21] , highlighting the need for antibodies and vaccines that are robust to viral escape. We have previously described an antibody, S309 4 , that exhibits potent effector functions and neutralizes all current SARS-CoV-2 variants 22,23 and the divergent sarbecovirus SARS-CoV-1. S309 forms the basis for an antibody therapy (VIR-7831, recently renamed sotrovimab) that has received Emergency Use Authorization from the FDA for treatment of COVID-19 24 . Longer term, antibodies with broad activity across SARS-related coronaviruses (sarbecoviruses) would be useful to combat potential future spillovers 6 . These efforts would be aided by a systematic understanding of the relationships among antibody epitope,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.