Sex-specific pheromones are known to play an important role in butterfly courtship, and may influence both individual reproductive success and reproductive isolation between species. Extensive ecological, behavioural and genetic studies of Heliconius butterflies have made a substantial contribution to our understanding of speciation. Male pheromones, although long suspected to play an important role, have received relatively little attention in this genus. Here, we combine morphological, chemical and behavioural analyses of male pheromones in the Neotropical butterfly Heliconius melpomene. First, we identify putative androconia that are specialized brush-like scales that lie within the shiny grey region of the male hindwing. We then describe putative male sex pheromone compounds, which are largely confined to the androconial region of the hindwing of mature males, but are absent in immature males and females. Finally, behavioural choice experiments reveal that females of H. melpomene, H. erato and H. timareta strongly discriminate against conspecific males which have their androconial region experimentally blocked. As well as demonstrating the importance of chemical signalling for female mate choice in Heliconius butterflies, the results describe structures involved in release of the pheromone and a list of potential male sex pheromone compounds.
Serotonin is an important neurotransmitter involved in various functions of the nervous, blood, and immune system. In general, detection of small biomolecules such as serotonin in real time with high spatial and temporal resolution remains challenging with conventional sensors and methods. In this work, we designed a near-infrared (nIR) fluorescent nanosensor (NIRSer) based on fluorescent singlewalled carbon nanotubes (SWCNTs) to image the release of serotonin from human blood platelets in real time. The nanosensor consists of a nonbleaching SWCNT backbone, which is fluorescent in the beneficial nIR tissue transparency window (800−1700 nm) and a serotonin binding DNA aptamer. The fluorescence of the NIRSer sensor (995 nm emission wavelength for (6,5)-SWCNTs) increases in response to serotonin by a factor up to 1.8. It detects serotonin reversibly with a dissociation constant of 301 nM ± 138 nM and a dynamic linear range in the physiologically relevant region from 100 nM to 1 μM. As a proof of principle, we detected serotonin release patterns from activated platelets on the single-cell level. Imaging of the nanosensors around and under the platelets enabled us to locate hot spots of serotonin release and quantify the time delay (≈ 21−30 s) between stimulation and release in a population of platelets, highlighting the spatiotemporal resolution of this nanosensor approach. In summary, we report a nIR fluorescent nanosensor for the neurotransmitter serotonin and show its potential for imaging of chemical communication between cells.
Detection of neurotransmitters is an analytical challenge and essential to understand neuronal networks in the brain and associated diseases. However, most methods do not provide sufficient spatial, temporal, or chemical resolution. Near-infrared (NIR) fluorescent single-walled carbon nanotubes (SWCNTs) have been used as building blocks for sensors/probes that detect catecholamine neurotransmitters, including dopamine. This approach provides a high spatial and temporal resolution, but it is not understood if these sensors are able to distinguish dopamine from similar catecholamine neurotransmitters, such as epinephrine or norepinephrine. In this work, the organic phase (DNA sequence) around SWCNTs was varied to create sensors with different selectivity and sensitivity for catecholamine neurotransmitters. Most DNA-functionalized SWCNTs responded to catecholamine neurotransmitters, but both dissociation constants (Kd) and limits of detection were highly dependent on functionalization (sequence). Kd values span a range of 2.3 nM (SWCNT-(GC)15 + norepinephrine) to 9.4 μM (SWCNT-(AT)15 + dopamine) and limits of detection are mostly in the single-digit nM regime. Additionally, sensors of different SWCNT chirality show different fluorescence increases. Moreover, certain sensors (e.g., SWCNT-(GT)10) distinguish between different catecholamines, such as dopamine and norepinephrine at low concentrations (50 nM). These results show that SWCNTs functionalized with certain DNA sequences are able to discriminate between catecholamine neurotransmitters or to detect them in the presence of interfering substances of similar structure. Such sensors will be useful to measure and study neurotransmitter signaling in complex biological settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.