Simulink is an example of a successful application of the paradigm of model-based development into industrial practice. Numerous companies create and maintain Simulink projects for modeling software-intensive embedded systems, aiming at early validation and automated code generation. However, Simulink projects are not as easily available as code-based ones, which profit from large publicly accessible open-source repositories, thus curbing empirical research. In this paper, we investigate a set of 1734 freely available Simulink models from 194 projects and analyze their suitability for empirical research. We analyze the projects considering (1) their development context, (2) their complexity in terms of size and organization within projects, and (3) their evolution over time. Our results show that there are both limitations and potentials for empirical research. On the one hand, some application domains dominate the development context, and there is a large number of models that can be considered toy examples of limited practical relevance. These often stem from an academic context, consist of only a few Simulink blocks, and are no longer (or have never been) under active development or maintenance. On the other hand, we found that a subset of the analyzed models is of considerable size and complexity. There are models comprising several thousands of blocks, some of them highly modularized by hierarchically organized Simulink subsystems. Likewise, some of the models expose an active maintenance span of several years, which indicates that they are used as primary development artifacts throughout a project’s lifecycle. According to a discussion of our results with a domain expert, many models can be considered mature enough for quality analysis purposes, and they expose characteristics that can be considered representative for industry-scale models. Thus, we are confident that a subset of the models is suitable for empirical research. More generally, using a publicly available model corpus or a dedicated subset enables researchers to replicate findings, publish subsequent studies, and use them for validation purposes. We publish our dataset for the sake of replicating our results and fostering future empirical research.
We are interested in the role of field user interaction data in the development of In-Vehicle Information Systems (IVISs), the potentials practitioners see in analyzing this data, the concerns they share, and how this compares to companies with digital products. We conducted interviews with 14 UX professionals, 8 from automotive and 6 from digital companies, and analyzed the results by emergent thematic coding. Our key findings indicate that implicit feedback through field user interaction data is currently not evident in the automotive UX development process. Most decisions regarding the design of IVISs are made based on personal preferences and the intuitions of stakeholders. However, the interviewees also indicated that user interaction data has the potential to lower the influence of guesswork and assumptions in the UX design process and can help to make the UX development lifecycle more evidence-based and user-centered. CCS CONCEPTS • General and reference → Surveys and overviews; • Humancentered computing → HCI design and evaluation methods; Empirical studies in HCI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.