It is commonly thought that human genetic diversity in non-African populations was shaped primarily by an out-of-Africa dispersal 50–100 thousand yr ago (kya). Here, we present a study of 456 geographically diverse high-coverage Y chromosome sequences, including 299 newly reported samples. Applying ancient DNA calibration, we date the Y-chromosomal most recent common ancestor (MRCA) in Africa at 254 (95% CI 192–307) kya and detect a cluster of major non-African founder haplogroups in a narrow time interval at 47–52 kya, consistent with a rapid initial colonization model of Eurasia and Oceania after the out-of-Africa bottleneck. In contrast to demographic reconstructions based on mtDNA, we infer a second strong bottleneck in Y-chromosome lineages dating to the last 10 ky. We hypothesize that this bottleneck is caused by cultural changes affecting variance of reproductive success among males.
Arctic populations live in an environment characterized by extreme cold and the absence of plant foods for much of the year and are likely to have undergone genetic adaptations to these environmental conditions in the time they have been living there. Genome-wide selection scans based on genotype data from native Siberians have previously highlighted a 3 Mb chromosome 11 region containing 79 protein-coding genes as the strongest candidates for positive selection in Northeast Siberians. However, it was not possible to determine which of the genes might be driving the selection signal. Here, using whole-genome high-coverage sequence data, we identified the most likely causative variant as a nonsynonymous G>A transition (rs80356779; c.1436C>T [p.Pro479Leu] on the reverse strand) in CPT1A, a key regulator of mitochondrial long-chain fatty-acid oxidation. Remarkably, the derived allele is associated with hypoketotic hypoglycemia and high infant mortality yet occurs at high frequency in Canadian and Greenland Inuits and was also found at 68% frequency in our Northeast Siberian sample. We provide evidence of one of the strongest selective sweeps reported in humans; this sweep has driven this variant to high frequency in circum-Arctic populations within the last 6-23 ka despite associated deleterious consequences, possibly as a result of the selective advantage it originally provided to either a high-fat diet or a cold environment.
An unconstrained reference sequence facilitates the detection of selection. In Drosophila, sequence variation in short introns seems to be least influenced by selection and dominated by mutation and drift. Here, we test this with genome-wide sequences using an African population (Malawi) of D. melanogaster and data from the related outgroup species D. simulans, D. sechellia, D. erecta and D. yakuba. The distribution of mutations deviates from equilibrium, and the content of A and T (AT) nucleotides shows an excess of variance among introns. We explain this by a complex mutational pattern: a shift in mutational bias towards AT, leading to a slight nonequilibrium in base composition and context-dependent mutation rates, with G or C (GC) sites mutating most frequently in AT-rich introns. By comparing the corresponding allele frequency spectra of AT-rich vs. GC-rich introns, we can rule out the influence of directional selection or biased gene conversion on the mutational pattern. Compared with neutral equilibrium expectations, polymorphism spectra show an excess of low frequency and a paucity of intermediate frequency variants, irrespective of the direction of mutation. Combining the information from different outgroups with the polymorphism data and using a generalized linear model, we find evidence for shared ancestral polymorphism between D. melanogaster and D. simulans, D. sechellia, arguing against a bottleneck in D. melanogaster. Generally, we find that short introns can be used as a neutral reference on a genome-wide level, if the spatially and temporally varying mutational pattern is accounted for.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.