The hydrological regime of many alpine rivers is heavily altered due hydroelectric power generation. Hydropeaking operation produces frequent and irregular discharge fluctuations. Depending on the operational changes of flow amplitude and/or upramping rate as well as on river morphology, hydropeaking can lead to quick and strong variations in hydraulic stress affecting stream invertebrates and causing increased drift. In the present flume experimental study, we analyzed trait-specific drift reactions to single and combined effects of increased flow amplitude and upramping rate. We analyzed taxa according to their hydraulic habitat preference and flow exposure, as these traits seem to be indicative toward hydropeaking. The results
Hydropeaking operation leads to fluctuations in wetted area between base and peak flow and increases discharge-related hydraulic forces (e.g. flow velocity). These processes promote macroinvertebrate drift and stranding, often affecting benthic abundance and biomass. Our field experimental study-conducted in three hydropeakingregulated Swiss rivers-aimed to quantify (a) the short-term effects of the combined increase in flow amplitude and up-ramping rate based on macroinvertebrate drift and stranding, as well as (b) long-term effects based on the established community composition. Hydropeaking led to increased macroinvertebrate drift compared to base flow and to unaffected residual flow reaches. Moreover, stranding of macroinvertebrates was positively related to drift, especially during the up-ramping phase. Flow velocity and up-ramping rate were identified as major determinants for macroinvertebrate drift, while flow ratio and down-ramping rate for stranding. Particularly high sensitivity towards hydropeaking was found for Limnephilidae, whereas Heptageniidae seemed to be resistant in respect to short-and long-term hydropeaking effects. In the longterm, hydropeaking did not considerably reduce benthic density of most taxa, especially of some highly resistant and resilient taxa such as Chironomidae and Baetidae, which dominated the community composition even though they showed comparably high drift and stranding responses. Therefore, we argue that high drift and/or stranding, especially of individual-rich taxa, does not necessarily indicate strong hydropeaking sensitivity. Finally, our results demonstrate the necessity to consider the differences in river-specific morphological complexity and hydropeaking intensity, since these factors strongly influence the community composition and short-term drift and stranding response of macroinvertebrates to hydropower pressure.
Instream large wood (LW) constitutes an indispensable element of natural river ecosystems. It affects local hydraulics, morphology, nutrient budget, overall habitat complexity, and dynamics. Despite numerous studies about LW as a habitat for benthic communities, information on the varying importance along the longitudinal gradient of a river is lacking. The focus of this study is therefore to investigate general differences between lithal and xylal colonizers and to further investigate trends along the river course. We analyzed lithal and xylal communities at ten sites along the medium-sized Lafnitz River in Southeast Austria. Our results significantly show (1) a general differentiation between lithal and xylal communities, (2) an increasing distinction of the lithal and xylal fauna along the longitudinal gradient of the river, and (3) a distinct correlation between the distance from source and the number of exclusive xylal and nowadays predominantly rare taxa. The presence of LW is therefore directly linked to higher aquatic biodiversity compared to rocky substrates and presents a unique element for river restoration, especially in lower river sections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.