Key message An integrative comparative transcriptomic approach on six sugar beet varieties showing different amount of sucrose loss during storage revealed genotype-specific main driver genes and pathways characterizing storability. Abstract Sugar beet is next to sugar cane one of the most important sugar crops accounting for about 15% of the sucrose produced worldwide. Since its processing is increasingly centralized, storage of beet roots over an extended time has become necessary. Sucrose loss during storage is a major concern for the sugar industry because the accumulation of invert sugar and byproducts severely affect sucrose manufacturing. This loss is mainly due to ongoing respiration, but changes in cell wall composition and pathogen infestation also contribute. While some varieties can cope better during storage, the underlying molecular mechanisms are currently undiscovered. We applied integrative transcriptomics on six varieties exhibiting different levels of sucrose loss during storage. Already prior to storage, well storable varieties were characterized by a higher number of parenchyma cells, a smaller cell area, and a thinner periderm. Supporting these findings, transcriptomics identified changes in genes involved in cell wall modifications. After 13 weeks of storage, over 900 differentially expressed genes were detected between well and badly storable varieties, mainly in the category of defense response but also in carbohydrate metabolism and the phenylpropanoid pathway. These findings were confirmed by gene co-expression network analysis where hub genes were identified as main drivers of invert sugar accumulation and sucrose loss. Our data provide insight into transcriptional changes in sugar beet roots during storage resulting in the characterization of key pathways and hub genes that might be further used as markers to improve pathogen resistance and storage properties.
The experimental data indicate that the application of hop beta acids improves the preservation effect of LAB in suppressing clostridial growth in silages and thus demonstrates some potential for the combined use of plant-based antimicrobials and LAB.
BACKGROUND During the manufacture of sucrose from sugar beet, different microorganisms originating from the plant material as well as from the soil enter the process. Due to the formation of polysaccharide‐based slimes, these contaminants may induce several adverse effects such as filtration problems during juice purification. Certain microorganisms also metabolize sucrose, leading to product losses with financial consequences. To better understand and to prevent these negative effects, the aim of the study was to investigate the evolution of relevant bacterial groups, including their metabolites appearing during the extraction process. For this purpose, one production cycle was monitored to identify the major contamination steps and to clarify how they relate to the processing conditions. Traditionally, different antimicrobial agents such as formaldehyde, sulfur dioxide, hypochlorous acid, sodium hypochlorite, and chlorine dioxide have been added to inhibit microbial growth. In the present study, a rosin‐based product derived from pine trees was applied as an alternative to those substances. RESULTS Press water, raw juice, and mid‐tower juice were identified as being highly contaminated with bacteria, and processing conditions such as time, temperature and pH level significantly influenced bacterial levels and the corresponding metabolites. Among the contaminants identified, lactic acid bacteria, and mesophilic and thermophilic aerobic bacteria played a dominant role, whereas lactic acid, acetic acid, butyric acid, and ethanol were identified as typical metabolites. CONCLUSION Bacterial growth during production could be reduced by shock dosing of the rosin‐based material in the extraction area. © 2020 Society of Chemical Industry
The investigations presented in this work were carried out in order to further deepen the knowledge about nitrite pathways in the area of sugar beet extraction. The article consists of two parts with different experimental set-up: the first part focuses on laboratory trials in which the fate of nitrate and nitrite was studied in a so-called mini-fermenter. These trials were carried out using juice from the hot part of the cossette mixer of an Agrana sugar factory in Austria. In the experiments, two common sugar factory disinfectants were used in order to study microbial as well as microbial-chemical effects on nitrite formation and degradation caused by bacteria present in the juice. The trials demonstrated that the direct microbial effect (denitrification) on nitrite degradation is more pronounced than the indirect microbial-chemical effect coming from pH value decrease by these bacteria and subsequent nitrite loss. The second part describes the findings from laboratory experiments and full scale factory trials using a mobile laboratory set-up based on insulated stainless steel containers and spectrophotometric detection of nitrite in various factory juices. The trials were made at two Nordzucker factories located in Finland (factory A) and Sweden (factory B). The inhibiting effect of the two common sugar factory disinfectants on nitrite formation was evaluated in laboratory trials, whereas the full scale trials focused on one disinfectant. Other trials to evaluate potential contamination sources of thermophilic nitrite producing bacteria to the extraction system, reactivation of nitrite producing bacteria in raw juice and the effect of a pH gradient on bacterial nitrite activity in cossette mixer juice are also reported.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.