Objectives To demonstrate the feasibility of an automated, non-invasive approach to estimate bone marrow (BM) infiltration of multiple myeloma (MM) by dual-energy computed tomography (DECT) after virtual non-calcium (VNCa) post-processing. Methods Individuals with MM and monoclonal gammopathy of unknown significance (MGUS) with concurrent DECT and BM biopsy between May 2018 and July 2020 were included in this retrospective observational study. Two pathologists and three radiologists reported BM infiltration and presence of osteolytic bone lesions, respectively. Bone mineral density (BMD) was quantified CT-based by a CE-certified software. Automated spine segmentation was implemented by a pre-trained convolutional neural network. The non-fatty portion of BM was defined as voxels > 0 HU in VNCa. For statistical assessment, multivariate regression and receiver operating characteristic (ROC) were conducted. Results Thirty-five patients (mean age 65 ± 12 years; 18 female) were evaluated. The non-fatty portion of BM significantly predicted BM infiltration after adjusting for the covariable BMD (p = 0.007, r = 0.46). A non-fatty portion of BM > 0.93% could anticipate osteolytic lesions and the clinical diagnosis of MM with an area under the ROC curve of 0.70 [0.49–0.90] and 0.71 [0.54–0.89], respectively. Our approach identified MM-patients without osteolytic lesions on conventional CT with a sensitivity and specificity of 0.63 and 0.71, respectively. Conclusions Automated, AI-supported attenuation assessment of the spine in DECT VNCa is feasible to predict BM infiltration in MM. Further, the proposed method might allow for pre-selecting patients with higher pre-test probability of osteolytic bone lesions and support the clinical diagnosis of MM without pathognomonic lesions on conventional CT. Key Points • The retrospective study provides an automated approach for quantification of the non-fatty portion of bone marrow, based on AI-supported spine segmentation and virtual non-calcium dual-energy CT data. • An increasing non-fatty portion of bone marrow is associated with a higher infiltration determined by invasive biopsy after adjusting for bone mineral density as a control variable (p = 0.007, r = 0.46). • The non-fatty portion of bone marrow might support the clinical diagnosis of multiple myeloma when conventional CT images are negative (sensitivity 0.63, specificity 0.71).
Background: The extent of lung involvement in Coronavirus Disease 2019 (COVID-19) pneumonia, quantified on computed tomography (CT), is an established biomarker for prognosis and guides clinical decision making. The clinical standard is semi-quantitative scoring of lung involvement by an experienced reader. We aim to compare the performance of automated deep-learning-and threshold-based methods to the manual semi-quantitative lung scoring. Further, we aim to investigate an optimal threshold for quantification of involved lung in COVID pneumonia chest CT, using a multi-center dataset. Methods: In total 250 patients were included, 50 consecutive patients with RT-PCR confirmed COVID-19 from our local institutional database, and another 200 patients from four international datasets (n=50 each). Lung involvement was scored semi-quantitatively by three experienced radiologists according to the established chest CT score (CCS) ranging from 0-25. Inter-rater reliability was reported by the intraclass correlation coefficient (ICC). Deep-learning-based segmentation of ground-glass and consolidation was obtained by CT Pulmo Auto Results prototype plugin on IntelliSpace Discovery (Philips Healthcare, The Netherlands). Threshold-based segmentation of involved lung was implemented using an open-source tool for whole-lung segmentation under the presence of severe pathologies (R231CovidWeb, Hofmanninger et al., 2020) and consecutive quantitative assessment of lung attenuation. The best threshold was investigated by training and testing a linear regression of deep-learning and threshold-based results in a five-fold cross validation strategy. Results: Median CCS among 250 evaluated patients was 10 [6-15]. Inter-rater reliability of the CCS was excellent [ICC 0.97 (0.97-0.98)]. Best attenuation threshold for identification of involved lung was −522 HU.While the relationship of deep-learning-and threshold-based quantification was linear and strong (r 2 deep-learning vs. threshold =0.84), both automated quantification methods translated to the semi-quantitative CCS in a nonlinear fashion, with an increasing slope towards higher CCS (r 2 deep-learning vs. CCS = 0.80, r 2 threshold vs. CCS =0.63).
The presented work explores the regulatory influence of upstream open reading frames (uORFs) on gene expression in Trypanosoma congolense. More than 31,000 uORFs in total were identified and characterized here. We found evidence for the uORFs’ appearance in the transcriptome to be correlated with proteomic expression data, clearly indicating their repressive potential in T. congolense, which has to rely on post-transcriptional gene expression regulation due to its unique genomic organization. Our data show that uORF’s translation repressive potential does not only correlate with elemental sequence features such as length, position and quantity, but involves more subtle components, in particular the codon and amino acid profiles. This corresponds with the popular mechanistic model of a ribosome shedding initiation factors during the translation of a uORF, which can prevent reinitiation at the downstream start codon of the actual protein-coding sequence, due to the former extensive consumption of crucial translation components. We suggest that uORFs with uncommon codon and amino acid usage can slow down the translation elongation process in T. congolense, systematically deplete the limited factors, and restrict downstream reinitiation, setting up a bottleneck for subsequent translation of the protein-coding sequence. Additionally we conclude that uORFs dynamically influence the T. congolense life cycle. We found evidence that transition to epimastigote form could be supported by gain of uORFs due to alternative trans-splicing, which down-regulate housekeeping genes’ expression and render the trypanosome in a metabolically reduced state of endurance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.