The fibrin content in blood clots is strongly associated with contrast uptake. As previously shown, the density of the clot formations in native CT scans is dependent on the RBC. Our data show that CT density and relative enhancement of clots are independent determinants of clot composition. Using both variables in the CT workup of acute ischemic stroke has the potential to have a decisive impact on patient stratification for treatment.
Highlights
Obesity and body composition determined in initial LDCT is a risk factor for SARS‐CoV‐2 infected patients.
An initial LDCT can be used to screen opportunistically for obese COVID-19 patients.
Unfavorable body composition is associated with increased risk for the need of intensive care treatment.
Background
Besides throat-nose swab polymerase chain reaction (PCR), unenhanced chest computed tomography (CT) is a recommended diagnostic tool for early detection and quantification of pulmonary changes in COVID-19 pneumonia caused by the novel corona virus. Demographic factors, especially age and comorbidities, are major determinants of the outcome in COVID-19 infection. This study examines the extra pulmonary parameter of bone mineral density (BMD) from an initial chest computed tomography as an associated variable of pre-existing comorbidities like chronic lung disease or demographic factors to determine the later patient’s outcome, in particular whether treatment on an intensive care unit (ICU) was necessary in infected patient
s.
Methods
We analyzed 58 PCR-confirmed COVID-19 infections that received an unenhanced CT at admission at one of the included centers. In addition to the extent of pulmonary involvement, we performed a phantomless assessment of bone mineral density of thoracic vertebra 9 - 12.
Results
In a univariate regression analysis BMD was found to be a significant predictor of the necessity for intensive care unit treatment of COVID-19 patients. In the subgroup requiring intensive care treatment within the follow-up period a significantly lower BMD was found.
In a multivariate logistic regression model considering gender, age and CT measurements of bone mineral density, BMD was eliminated from the regression analysis as a significant predictor.
Conclusion
Phantomless assessed BMD provides prognostic information on the necessity for ICU treatment in course of COVID-19 pneomonia. We recommend using the measurement of BMD in an initial CT image to facilitate a potentially better prediction of severe patient outcomes within the 22 days after an initial CT scan.
Consequently, in the present sample, additional bone density analysis did not result in a prognostic advantage over simply considering age. Significantly larger patient cohorts with a more homogenous patient age should be performed in the future to illustrate potential effects.
Clinical relevance
While clinical capacities such as ICU beds and ventilators are more crucial than ever to help manage the current global corona pandemic, this work introduces an approach that can be used in a cost-effective way to help determine the amount of these rare clinical resources required in the near future.
Objectives
To demonstrate the feasibility of an automated, non-invasive approach to estimate bone marrow (BM) infiltration of multiple myeloma (MM) by dual-energy computed tomography (DECT) after virtual non-calcium (VNCa) post-processing.
Methods
Individuals with MM and monoclonal gammopathy of unknown significance (MGUS) with concurrent DECT and BM biopsy between May 2018 and July 2020 were included in this retrospective observational study. Two pathologists and three radiologists reported BM infiltration and presence of osteolytic bone lesions, respectively. Bone mineral density (BMD) was quantified CT-based by a CE-certified software. Automated spine segmentation was implemented by a pre-trained convolutional neural network. The non-fatty portion of BM was defined as voxels > 0 HU in VNCa. For statistical assessment, multivariate regression and receiver operating characteristic (ROC) were conducted.
Results
Thirty-five patients (mean age 65 ± 12 years; 18 female) were evaluated. The non-fatty portion of BM significantly predicted BM infiltration after adjusting for the covariable BMD (p = 0.007, r = 0.46). A non-fatty portion of BM > 0.93% could anticipate osteolytic lesions and the clinical diagnosis of MM with an area under the ROC curve of 0.70 [0.49–0.90] and 0.71 [0.54–0.89], respectively. Our approach identified MM-patients without osteolytic lesions on conventional CT with a sensitivity and specificity of 0.63 and 0.71, respectively.
Conclusions
Automated, AI-supported attenuation assessment of the spine in DECT VNCa is feasible to predict BM infiltration in MM. Further, the proposed method might allow for pre-selecting patients with higher pre-test probability of osteolytic bone lesions and support the clinical diagnosis of MM without pathognomonic lesions on conventional CT.
Key Points
• The retrospective study provides an automated approach for quantification of the non-fatty portion of bone marrow, based on AI-supported spine segmentation and virtual non-calcium dual-energy CT data.
• An increasing non-fatty portion of bone marrow is associated with a higher infiltration determined by invasive biopsy after adjusting for bone mineral density as a control variable (p = 0.007, r = 0.46).
• The non-fatty portion of bone marrow might support the clinical diagnosis of multiple myeloma when conventional CT images are negative (sensitivity 0.63, specificity 0.71).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.