Purpose Growing awareness of the environmental performance of construction products and buildings brings about the need for a suitable method to assess their environmental performance. Life cycle assessment (LCA) has become a widely recognised and accepted method to assess the burdens and impacts throughout the life cycle. This LCA-based information may be in the form of environmental product declarations (EPD) or product environmental footprints (PEF), based on reliable and verifiable information. All of these use LCA to quantify and report several environmental impact categories and may also provide additional information. To better understand on the one hand existing EPD programmes (EN 15804) for each country and on the other the recent developments in terms of EU reference document (e.g. PEF), the authors decided to write this review paper based on the outcomes of the EPD workshop that was held prior to SB13 Graz conference. Methods This paper presents the state of the art in LCA and an overview of the EPD programmes in five European countries (Austria, Belgium, France, Germany, Switzerland) based on the workshop in the first part and a comprehensive description and comparison of the PEF method and EN 15804 in the second part. In the last part, a general conclusion will wrap up the findings and results will provide a further outlook on future activities. Results and discussion The high number of EPD programmes underlines the fact that there is obviously a demand for assessments of the environmental performance of construction materials. In the comparison between and experiences of the different countries, it can be seen that more similarities than differences exist. A comparison between PEF and EPD shows Responsible editor:
Life cycle assessment (LCA) tools have been used by governments and city administrators to support the decision-making process toward creating a more sustainable society. Since LCA is strongly influenced by local conditions and may vary according to various factors, several institutions have launched cooperation projects to achieve sustainable development goals. In this study, we assessed the potential environmental enhancements within the production of road materials applied to the road network of Münster, Germany. We also compared traditional pavement structures used in Münster and alternative options containing asphalt mixtures with larger amounts of reclaimed asphalt pavement (RAP). Although the case study was conducted in Münster, the data collected and the results obtained in this study can be used for comparison purposes in other investigations. In the analysis, we considered all environmental impacts from raw material extraction to the finished product at the asphalt plant. Two environmental indicators were used: non-renewable cumulative energy demand (nr-CED) and global warming potential (GWP). The results show that using RAP increases the consumption of energy but potentially decreases the environmental impacts in terms of the nr-CED and GWP associated with the production of asphalt materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.