Abstract:In many mountain regions, large land areas with heterogeneous soils have become ice-free with the ongoing glacier retreat. On these recently formed proglacial fields, the melt of the remaining glaciers typically drives pronounced diurnal stream level fluctuations that propagate into the riparian zone. This behaviour was measured on the Damma glacier forefield in central Switzerland with stage recorders in the stream and groundwater monitoring wells along four transects. In spite of the large groundwater stage variations, radon measurements in the near-stream riparian zone indicate that there is little mixing between stream water and groundwater on daily time scales. At all four transects, including both losing and gaining reaches, the groundwater level fluctuations lagged the stream stage variations and were often damped with distance from the stream. Similar behaviours have been modelled using the diffusion equation in coastal regions influenced by tidal sea level variations. We thus tested the ability of such a model to predict groundwater level fluctuations in proglacial fields. The model reproduced several key features of the observed fluctuations at three of four locations, although discrepancies also arise due to non representative input data and model simplifications. Nevertheless, calibration of the model for the individual transects yielded realistic estimates of hydraulic diffusivities between the stream and groundwater monitoring wells. We conclude that studying diurnal groundwater fluctuations can provide important information about the subsurface hydrology of alpine watersheds dominated by glacier melt.
Abstract. This study aims at understanding interactions between stream and aquifer in a glacierized alpine catchment. We specifically focused on a glacier forefield, for which continuous measurements of stream water electrical conductivity, discharge and depth to the water table were available over four consecutive years. Based on this dataset, we developed a two-component mixing model in which the groundwater component was modelled using measured groundwater levels. The aquifer actively contributing to stream flow was assumed to be a superposition of two linear storage units. Calibrating the model against measured total discharge yielded reliable sub-hourly estimates of discharge and insights into groundwater storage properties. We found that a near-surface aquifer with high hydraulic conductivity overlies a larger reservoir with longer response time. Analyzing the mass balance of infiltration into the groundwater reservoir against exfiltration into the stream provided results that were in line with previous findings at this catchment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.