Die industrielle Batteriezellfertigung ist geprägt durch starre Produktionssysteme für die Massenfertigung. Die Fertigung anwendungsspezifischer Zellen im geringen bis mittleren Stückzahlsegment erfolgt derzeit kostenintensiv in einer Werkstattfertigung. Basierend auf standardisierten Roboterzellen und einer flexiblen Steuerungsarchitektur wird ein Konzept zur hoch automatisierten material-, format- und stückzahlflexiblen Batteriezellfertigung beschrieben.
Industrial battery cell production is characterized by rigid production systems for mass production. The production of application-specific cells in a low to medium quantity segment is currently performed by cost-intensive workshop production. Based on standardized robotic cells and a flexible control architecture, a concept for highly automated battery cell production that is flexible in terms of material, format and number of units is described.
Batteriekalander werden aktuell manuell, erfahrungsbasiert und zeitintensiv iterativ beim Start einer neuen Produktionskampagne eingestellt und bei Bedarf während der Produktion nachjustiert. Bei einer variantenreichen und agilen Produktion tritt dieser Anlaufprozess im Gegensatz zu einer auf ein Produkt spezialisierten Großserienproduktion vermehrt auf. Ein Anlagen- und Automatisierungskonzept für einen schnelleren Produktionsanlauf von Batteriekalandern wird im Folgenden vorgestellt.
Battery calenders are currently set manually, experience-based and time-intensively iteratively at the start of a new production campaign and are readjusted as required during production. In a variant-rich and agile production, this start-up process occurs more frequently in contrast to a large-scale production specialized on one product. A plant and automation concept for faster production startup of battery calenders is presented below.
This paper presents the thermal analysis of a novel laser sintering machine for additive manufacturing of continuous carbon fibre-reinforced polymer parts. The core element of this machine is a fibre integration unit with a heated fibre nozzle. With the help of an additional heat source, which is mounted on the bottom side of the fibre integration unit, the temperature of the powder bed surface is kept within the sintering window of the PA12 material used in the investigations. Different heat source variants differing in shape and material were analysed experimentally concerning the heat distribution achieved within the powder bed surface using an infrared camera. Based on the best-rated variant showing the most homogeneous heat distribution, operating points for successful continuous fibre integration were experimentally identified. An aluminium plate with a closed fibre nozzle slot and symmetrical surface heating power has proven to keep the powder bed surface reliably warm. Compared to the initial state, the resulting increased uniformity of heat-affected zones created by the heated fibre nozzle HAZ was evaluated by fabricating a horseshoe part made of PA12. Furthermore, a CCFRP flat pedal for mountain bikes demonstrated roving integration’s process reliability and reproducibility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.