The spread of cell phone technology across Africa has transforming effects on the economic and political sphere of the continent. In this paper, we investigate the impact of cell phone technology on violent collective action. We contend that the availability of cell phones as a communication technology allows political groups to overcome collective action problems more easily and improve in-group cooperation, and coordination. Utilizing novel, spatially disaggregated data on cell phone coverage and the location of organized violent events in Africa, we are able to show that the availability of cell phone coverage significantly and substantially increases the probability of violent conflict. Our findings hold across numerous different model specifications and robustness checks, including cross-sectional models, instrumental variable techniques, and panel data methods.
Developing political forecasting models not only increases the ability of political scientists to inform public policy decisions, but is also relevant for scientific advancement. This article argues for and demonstrates the utility of creating forecasting models for predicting political conflicts in a diverse range of country settings. Apart from the benefit of making actual predictions, we argue that predictive heuristics are one gold standard of model development in the field of conflict studies. As such, they shed light on an array of important components of the political science literature on conflict dynamics. We develop and present conflict predictions that have been highly accurate for past and subsequent events, exhibiting few false-negative and false-positive categorizations. Our predictions are made at the monthly level for 6-month periods into the future, taking into account the social-spatial context of each individual country. The model has a high degree of accuracy in reproducing historical data measured monthly over the past 10 years and has approximately equal accuracy in making forecasts. Thus, forecasting in political science is increasingly accurate. At the same time, by providing a gold standard that separates model construction from model evaluation, we can defeat observational research designs and use true prediction as a way to evaluate theories. We suggest that progress in the modeling of International Studies Review (2013) 15, 473-490 conflict research depends on the use of prediction as a gold standard of heuristic evaluation.
We present ensemble Bayesian model averaging (EBMA) and illustrate its ability to aid scholars in the social sciences to make more accurate forecasts of future events. In essence, EBMA improves prediction by pooling information from multiple forecast models to generate ensemble predictions similar to a weighted average of component forecasts. The weight assigned to each forecast is calibrated via its performance in some validation period. The aim is not to choose some “best” model, but rather to incorporate the insights and knowledge implicit in various forecasting efforts via statistical postprocessing. After presenting the method, we show that EBMA increases the accuracy of out-of-sample forecasts relative to component models in three applied examples: predicting the occurrence of insurgencies around the Pacific Rim, forecasting vote shares in U.S. presidential elections, and predicting the votes of U.S. Supreme Court Justices.
Government formation in multiparty systems is of self-evident substantive importance, and the subject of an enormous theoretical literature. Empirical evaluations of models of government formation tend to separate government formation per se, from the distribution of key government payoffs such as cabinet portfolios between members of the government that forms. Models of government formation are necessarily specified ex ante, absent any knowledge of the government that forms. Models of the distribution of cabinet portfolios are typically, though not necessarily, specified ex post, given knowledge of the identity of some government "formateur" or even of the full partisan composition of the eventual cabinet. This disjunction lies at the heart of a notorious contradiction between predictions of the distribution of cabinet portfolios made by canonical models of legislative bargaining, and the robust empirical regularity of proportional portfolio allocations -"Gamson's Law". We resolve this contradiction by specifying and estimating a joint model of cabinet formation and portfolio distribution, which for example predicts ex ante which parties will receive zero portfolios rather than taking this as given ex post.We conclude that canonical models of legislative bargaining do add to our ability to predict government membership, but that portfolio distribution between government members conforms robustly to a proportionality norm … we suggest because portfolio distribution follows the much more difficult process of policy bargaining in the typical government formation process.Cabinet formation and portfolio distribution in European multi-party systems / 2
Instrumental variable (IV) methods are widely used to address endogeneity concerns. Yet, a specific kind of endogeneity – spatial interdependence – is regularly ignored. We show that ignoring spatial interdependence in the outcome results in asymptotically biased estimates even when instruments are randomly assigned. The extent of this bias increases when the instrument is also spatially clustered, as is the case for many widely used instruments: rainfall, natural disasters, economic shocks, and regionally- or globally-weighted averages. Because the biases due to spatial interdependence and predictor endogeneity can offset, addressing only one can increase the bias relative to ordinary least squares. We demonstrate the extent of these biases both analytically and via Monte Carlo simulation. Finally, we discuss a general estimation strategy – S-2SLS – that accounts for both outcome interdependence and predictor endogeneity, thereby recovering consistent estimates of predictor effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.