How do neural language models keep track of number agreement between subject and verb? We show that 'diagnostic classifiers', trained to predict number from the internal states of a language model, provide a detailed understanding of how, when, and where this information is represented. Moreover, they give us insight into when and where number information is corrupted in cases where the language model ends up making agreement errors. To demonstrate the causal role played by the representations we find, we then use agreement information to influence the course of the LSTM during the processing of difficult sentences. Results from such an intervention reveal a large increase in the language model's accuracy. Together, these results show that diagnostic classifiers give us an unrivalled detailed look into the representation of linguistic information in neural models, and demonstrate that this knowledge can be used to improve their performance.
Exploratory analyses are an important first step in psychological research, particularly in problem-based research where various variables are often included from multiple theoretical perspectives not studied together in combination before. Notably, exploratory analyses aim to give first insights into how items and variables included in a study relate to each other. Typically, exploratory analyses involve computing bivariate correlations between items and variables and presenting them in a table. While this is suitable for relatively small data sets, such tables can easily become overwhelming when datasets contain a broad set of variables from multiple theories. We propose the Gaussian graphical model as a novel exploratory analyses tool and present a systematic roadmap to apply this model to explore relationships between items and variables in environmental psychology research. We demonstrate the use and value of the Gaussian graphical model to study relationships between a broad set of items and variables that are expected to explain the effectiveness of community energy initiatives in promoting sustainable energy behaviors.
Goal-directed behavior is a deeply important part of human psychology. People constantly set goals for themselves and pursue them in many domains of life. In this paper, we develop computational models that characterize how humans pursue goals in a complex dynamic environment and test how well they describe human behavior in an experiment. Our models are motivated by the principle of resource rationality and draw upon psychological insights about people's limited attention and planning capacities. We find that human goal pursuit is qualitatively different and substantially less efficient than optimal goal pursuit in our simulated environment. Models of goal pursuit based on the principle of resource rationality capture human behavior better than both a model of optimal goal pursuit and heuristics that are not resource-rational. We conclude that the way humans pursue goals is shaped by the need to achieve goals effectively as well as cognitive costs and constraints on planning and attention. Our findings are an important step toward understanding humans' goal pursuit as cognitive limitations play a crucial role in shaping people's goal-directed behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.