A Novel Concept for the Study of Heterogeneous Robotic Swarms warm robotics systems are characterized by decentralized control, limited communication between robots, use of local information, and emergence of global behavior. Such systems have shown their potential for flexibility and robustness [1]-[3]. However, existing swarm robotics systems are by and large still limited to displaying simple proof-of-concept behaviors under laboratory conditions. It is our contention that one of the factors holding back swarm robotics research is the almost universal insistence on homogeneous system components. We believe that swarm robotics designers must embrace heterogeneity if they ever want swarm robotics systems to approach the complexity required of real-world systems. To date, swarm robotics systems have almost exclusively comprised physically and behaviorally undifferentiated agents. This design decision has its roots in ethological models of self-organizing natural systems. These models serve as inspiration for swarm robotics system designers, but are often highly abstract simplifications of natural systems and, to date, have largely assumed homogeneous agents. Selected dynamics of the systems under study are shown to emerge from the interactions of identical system components, ignoring the heterogeneities (physical, spatial, functional, and informational) that one can find in almost any natural system. The field of swarm robotics currently lacks methods and tools with which to study and leverage the heterogeneity that is present in natural systems. To remedy this deficiency, we propose swarmanoid, an innovative swarm robotics system composed of three different robot types with complementary skills: foot-bots are small autonomous robots specialized in moving on both even and uneven terrains, capable of self-assembling and of transporting objects or other robots; hand-bots are autonomous robots capable of climbing some vertical surfaces and manipulating small objects; and eye-bots are autonomous flying robots that can attach to an indoor ceiling, capable of analyzing the environment from a privileged position to S
This article considers the suitability of current robots designed to assist humans in accomplishing their daily domestic tasks. With several million units sold worldwide, robotic vacuum cleaners are currently the figurehead in this field. As such, we will use them to investigate the following key question: Could a robot possibly replace the hand-operated vacuum cleaner? One must consider not just how well a robot accomplishes its task, but also how well it integrates inside the user's space and perception. We took a holistic approach to addressing these topics by combining two studies in order to build a common ground. In the first of these studies, we analyzed a sample of seven robots to identify the influence of key technologies, like the navigation system, on performance. In the second study, we conducted an ethnographic study within nine households to identify users' needs. This innovative approach enables us to recommend a number of concrete improvements aimed at fulfilling users' needs by leveraging current technologies to reach new possibilities.
We present the design approach and evaluation of our prototype called "Ranger". Ranger is a robotic toy box that aims to motivate young children to tidy up their room. We evaluated Ranger in 14 families with 31 children (2-10 years) using the Wizard-of-Oz technique. This case study explores two different robot behaviors (proactive vs. reactive) and their impact on children's interaction with the robot and the tidying behavior. The analysis of the video recorded scenarios shows that the proactive robot tended to encourage more playful and explorative behavior in children, whereas the reactive robot triggered more tidying behavior. Our findings hold implications for the design of interactive robots for children, and may also serve as an example of evaluating an early version of a prototype in a real-world setting.
Abstract. In this article, the RObject concept is first introduced. This is followed by a survey of applicable energy scavenging technologies. Energy is a key issue for the large scale deployment of robotics in daily life, as recharging the batteries places a considerable burden on the end-user and is a waste of energy which has an overall negative impact on the limited resources of our planet. We show how the energy obtained from light, water flow, and human work, could be promising sources of energy for powering low-duty devices. To assess the feasibility of powering future RObjects with technologies, tests were conducted on commonly available robotic vacuum cleaners. These tests established an upper-bound on the power requirements for RObjects. Finally, based on these results, the feasibility of powering RObjects using scavenged energy is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.