The applications of solid-phase microextraction (SPME) are continuously expanding, and one of the most interesting current aspects consists of applying SPME for fast analysis of biological fluids. The goal of this study is to develop biocompatible SPME coatings that can be utilized for in vivo and in vitro extractions, in direct contact with a biological matrix such as blood or tissue. The biocompatibility of the proposed new coatings is confirmed by X-ray photoelectron spectroscopy, and their performance is tested by developing an SPME/HPLC method for analysis of verapamil, loperamide, diazepam, nordiazepam, and warfarin in buffer solutions and in human plasma. The coatings prove to be biocompatible by not adsorbing proteins and are successfully applied for fast drug analysis and assay of drug plasma protein binding.
Background:We sought to develop a technique with the potential to partly replace current methods of analysis based on blood draws. To achieve this goal, we developed an in vivo microextraction technique that is faster than conventional methods, interferes minimally with the investigated system, minimizes errors associated with sample preparation, and limits exposure to hazardous biological samples. Methods: Solid-phase microextraction devices based on hydrophilic polypyrrole and polyethylene glycol coatings were used for direct extraction of drugs from the flowing blood of beagle dogs, over a period of 8 h. The drugs extracted on the probes were subsequently quantified by liquid chromatography coupled to tandem mass spectrometry. Two calibration strategies-external and standard on the fiber-were used to correlate the amount extracted with the in vivo concentration. Results: Diazepam and its metabolites were successfully monitored over the course of a pharmacokinetic study, repeated 3 times on 3 beagles. The fast microextraction technique was validated by comparison with conventional plasma analysis, and a correlation factor of 0.99 was obtained. In addition to total concentrations, the method was useful for determining free drug concentrations. Conclusions:The proposed technique has several advantages and is suitable for fast clinical analyses. This approach could be used not only for drugs, but for any other endogenous or exogenous compounds.
An integrated microsampling approach based on solid-phase microextraction (SPME) was developed to provide a complete solution to highly efficient and accurate pharmacokinetic studies. The microsampling system included SPME probes that are made of poly(ethylene glycol) (PEG) and C18-bonded silica, a fast and efficient sampling strategy with accurate kinetic calibration, and a high-throughput desorption device based on a modified 96-well plate. The sampling system greatly improved the quantitative capability of SPME in two ways. First, the use of the C18-bonded silica/PEG fibers minimized the competition effect from analogues of the target analytes in a complicated sample matrix such as blood or plasma samples, which is a common problem associated with solid coating SPME fibers for quantitative analysis. Moreover, the C18-bonded silica/PEG fibers provide high sensitivity and a large dynamic range that covers the possible sample concentration range during diazepam administration and elimination. Second, the kinetic calibration method offers more accurate quantitation than the calibration curve method for in vivo SPME, because it compensates for convection and matrix effects during sampling. Therefore, it is especially suitable as a fast sampling technique for pre-equilibrium SPME. Furthermore, with the high-throughput desorption device, the integrated system offers compactness and high efficiency. Its feasibility for in vivo sampling was demonstrated by monitoring diazepam pharmacokinetics and validated by conventional chemical assays and equilibrium SPME. In addition, we propose a simple method to determine the apparent distribution constant between an SPME fiber and a blood matix (Kfs) and the distribution constant between an SPME fiber and a pure PBS buffer sample matrix (Kfb). As a result, both total and free concentrations of the drug and its metabolites can be detected simultaneously. Accordingly, the binding constants to the blood matrix can be obtained, which are of special significance for clinical diagnosis and drug discovery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.