A highly interconnected network of arterioles overlies mammalian cortex to route blood to the cortical mantle. Here we test if this angioarchitecture can ensure that the supply of blood is redistributed after vascular occlusion. We use rodent parietal cortex as a model system and image the flow of red blood cells in individual microvessels. Changes in flow are quantified in response to photothrombotic occlusions to individual pial arterioles as well as to physical occlusions of the middle cerebral artery (MCA), the primary source of blood to this network. We observe that perfusion is rapidly reestablished at the first branch downstream from a photothrombotic occlusion through a reversal in flow in one vessel. More distal downstream arterioles also show reversals in flow. Further, occlusion of the MCA leads to reversals in flow through approximately half of the downstream but distant arterioles. Thus the cortical arteriolar network supports collateral flow that may mitigate the effects of vessel obstruction, as may occur secondary to neurovascular pathology.
Modulation of receptive field properties of thalamic somatosensory neurons by the depth of anesthesia. The dominant frequency of electrocorticographic (ECoG) recordings was used to determine the depth of halothane or urethan anesthesia while recording extracellular single-unit responses from thalamic ventral posterior medial (VPM) neurons. A piezoelectric stimulator was used to deflect individual whiskers to assess the peak onset latency, magnitude, probability of response, and receptive field (RF) size. There was a predictable increase in the dominant ECoG frequency from deep stage IV to light stage III-1 anesthetic levels. There was no detectable frequency at stage IV, a 1- to 2-Hz dominant frequency at stage III-4, 3-4 Hz at stage III-3, 5-7 Hz at stage III-2, and a dual 6- and 10- to 13-Hz pattern at stage III-1. Reflexes and other physical signs showed a correlation with depth of anesthesia but exhibited too much overlap between stages to be used as a criterion for any single stage. RF size and peak onset latency of VPM neurons to whisker stimulations increased between stage III-4 and III-1. A dramatic increase in RF size and response latency occurred at the transition from stage III-3 (RF size approximately 2 whiskers, latency approximately 7 ms) to stage III-2 (RF size approximately 6 whiskers, latency approximately 11 ms). Response probability and magnitude decreased from stage III-4 to stage III-3 and III-2. No responses were ever evoked in VPM cells by vibrissa movement at stage IV. These changes in VPM responses as a function of anesthetic depth were seen only when the nucleus principalis (PrV) and nucleus interpolaris (SpVi) trigeminothalamic pathways were both intact. Eliminating SpVi inputs to VPM, either by cutting the primary trigeminal afferent fibers to SpVi or cutting axons projecting from SpVi to VPM, immediately reduced the RF size to fewer than three whiskers. In addition, the predictable changes in VPM response probability, response magnitude, and peak onset latency at different anesthetic depths were all absent after SpVi pathway interruption. We conclude that 1) the PrV input mediates the near "one-to-one" correspondence between a neuronal response in VPM and a single mystacial whisker, 2) in contrast, the SpVi input to VPM is primarily responsible for the RF properties of VPM neurons at light levels of anesthesia and presumably in the awake animal, and 3) alterations in VPM responses produced by changing the depth of anesthesia are due to its selective influence on the properties mediated by SpVi inputs at the level of the thalamus.
The rodent barrel field cortex integrates somatosensory information from two separate thalamic nuclei, the ventral posterior medial nucleus (VPM) and the rostral sector of the posterior complex (POm). This paper compares the sensory responses of POm and VPM cells in urethane-anesthetized rats as a first step in determining how cortex integrates multiple sensory pathways. A complete representation of the contralateral body surface was identified in POm. Trigeminal receptive fields (RFs) of POm and VPM cells were mapped by computer-controlled displacement of individual whiskers; responses were quantified by using peristimulus time histograms. Average RF size was similar in POm (5.1 whiskers) and VPM (4.4 whiskers), but evoked responses in the two nuclei differed significantly according to all other measures. VPM cells were maximally responsive to one single whisker--the "center RF." Stimulating this whisker evoked, on average, a response of 1.4 spikes/stimulus at a latency of 7 ms; surrounding whiskers evoked responses of less than 1 spike/stimulus at latencies of greater than 8 ms. In contrast, POm cells were nearly equally responsive to several whiskers. Quantitative criteria allowed us to designate a single whisker as the "center RF" and stimulating this whisker evoked, on average, a response of 0.5 spikes/stimulus at a latency of 19 ms. VPM cells, but not POm cells, were able to "follow" repeated whisker deflection at greater than 5 Hz. We conclude that, when a single whisker is deflected, VPM activates the related cortical barrel-column at short latency--before the onset of activity in POm. The timing of activation could allow POm cells to modulate the spread of activity between cortical columns.
Changes in spontaneous activity within the cortex recognized by subthreshold fluctuations of the membrane potential of cortical neurons modified the response of cortical neurons to sensory stimuli. Sensory stimuli occurring in the hyperpolarized "down" state evoked a larger depolarization and were more effective in evoking action potentials than stimuli occurring in the depolarized "up" state. Direct electrical stimulation of the thalamus showed the same dependence on the cell's state at the time of the stimulus, ruling out a strictly thalamic mechanism. Stimuli were more effective at triggering action potentials in the down state even during moderate de- or hyperpolarization of the somatic membrane potential. The postsynaptic potential (PSP) evoked from the down state was larger than the up state PSP but achieved about the same peak membrane potential, which was also near the reversal potential of the PSP (about -51 mV). Chloride loading shifted the reversal potentials of both the up state and the whisker-evoked PSP toward a more depolarized membrane potential. In addition, the threshold for action potentials evoked from the down state was lower than for spikes evoked in the up state. Thus the larger PSP from the down state may be caused by its larger driving force, and the state dependence of action potential generation in response to whisker stimulation may in part be related to a shift in threshold. Different mechanisms are therefore responsible for the state-dependence of PSP amplitude and the spike frequency response to the whisker stimulus.
Protein phosphatase 2A (PP2A) is a heterotrimeric enzyme consisting of a catalytic subunit (C), a structural subunit (A), and a variable regulatory subunit (B). We have investigated the spatial and temporal expression patterns of three members of the B subunit family, Balpha, Bbeta, and Bgamma, both at the message level by using ribonuclease protection analysis and at the protein level by using specific antibodies. Although A, Balpha, and C protein are expressed in many tissues, Bbeta and Bgamma were detectable only in brain. Balpha, Bbeta, and Bgamma are components of the brain PP2A heterotrimer, because they copurified with A and C subunits on immobilized microcystin. Whereas Balpha and Bbeta are mainly cytosolic, Bgamma is enriched in the cytoskeletal fraction. In contrast to A, C, and Balpha, which are expressed at constant levels, Bbeta and Bgamma RNA and protein are developmentally regulated, with Bbeta levels decreasing and Bgamma levels increasing sharply after birth. RNA and immunoblot analyses of subdissected brain regions as well as immunohistochemistry demonstrated that B subunits are expressed in distinct but overlapping neuronal populations and cellular domains. These data indicate that B subunits confer tissue and cell specificity, subcellular localization, and developmental regulation to the PP2A holoenzyme. The Balpha-containing heterotrimer may be important in general neuronal functions that involve its partially nuclear localization. Holoenzymes containing B likely function in early brain development as well as in somata and processes of subsets of mature neurons. Bgamma may target PP2A to cytoskeletal substrates that are important in the establishment and maintenance of neuronal connections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.