As populations increase their life expectancy, age-related neurodegenerative disorders such as Alzheimer's disease have become more common. I 2 -Imidazoline receptors (I 2 -IR) are widely distributed in the central nervous system, and dysregulation of I 2 -IR in patients with neurodegenerative diseases has been reported, suggesting their implication in cognitive impairment. This evidence indicates that high-affinity selective I 2 -IR ligands potentially contribute to the delay of neurodegeneration. In vivo studies in the female senescence accelerated mouse-prone 8 mice have shown that treatment with I 2 -IR ligands, MCR5 and MCR9, produce beneficial effects in behavior and cognition. Changes in molecular pathways implicated in oxidative stress, inflammation, synaptic plasticity, and apoptotic cell death were also studied. Furthermore, treatments with these I 2 -IR ligands diminished the amyloid precursor protein processing pathway and increased Aβ degrading enzymes in the hippocampus of SAMP8 mice. These results collectively demonstrate the neuroprotective role of these new I 2 -IR ligands in a mouse model of brain aging through specific pathways and suggest their potential as therapeutic agents in brain disorders and age-related neurodegenerative diseases.
Elevated glucocorticoid (GC) exposure is widely accepted as a key factor in the age-related cognitive decline in rodents and humans. 11β-HSD1 is a key enzyme in the GCs pathway, catalyzing the conversion of 11β-dehydrocorticosterone to corticosterone in mice, with possible implications in neurodegenerative processes and cognitive impairment. Here, we determined the effect of a new 11β-HSD1 inhibitor, RL-118, administered to 12-month-old senescence-accelerated mouse-prone 8 (SAMP8) mice with neuropathological AD-like hallmarks and widely used as a rodent model of cognitive dysfunction. Behavioral tests (open field and object location) and neurodegeneration molecular markers were studied. After RL-118 treatment, increased locomotor activity and cognitive performance were found. Likewise, we found changes in hippocampal autophagy markers such as Beclin1, LC3B, AMPKα, and mTOR, indicating a progression in the autophagy process. In line with autophagy increase, a diminution in phosphorylated tau species (Ser 396 and Ser 404) jointly with an increase in ADAM10 and sAPPα indicated that an improvement in removing the abnormal proteins by autophagy might be implicated in the neuroprotective role of the 11β-HSD1 inhibitor. In addition, gene expression of oxidative stress (OS) and inflammatory markers, such as Hmox1, Aldh2, Il-1β, and Ccl3, were reduced in old treated mice in comparison to that of the control group. Consistent with this, we further demonstrate a significant correlation with autophagy markers and cognitive improvement and significant inverse correlation with autophagy, OS, and neuroinflammation markers. We concluded that inhibition of 11β-HSD1 by RL-118 prevented neurodegenerative processes and cognitive decline, acting on autophagy process, being an additional neuroprotective mechanism not described previously.
Imidazoline I 2 receptors (I 2-IR), widely distributed in the CNS and altered in patients that suffered from neurodegenerative disorders, are orphan from the structural point of view and new I 2-IR ligands are urgently required for improving their pharmacological characterization. We report the synthesis and 3D-QSAR studies of a new family of bicyclic -iminophosphonates endowed with relevant affinities for human brain I 2-IR. Acute treatment in mice with a selected compound significantly decreased the FADD protein in the hippocampus, a key marker in neuroprotective actions. Additionally, in vivo studies in the familial Alzheimer's disease 5xFAD murine model revealed beneficial effects in behavior and cognition. These results are supported by changes in molecular pathways related to cognitive decline and Alzheimer's disease. Therefore bicyclic -iminophosphonates are tools that may open new therapeutic avenues for I 2-IR, particularly for unmet neurodegenerative conditions.
Background and Purpose: The development of effective therapeutic strategies against Alzheimer's disease (AD) remains a challenge. I 2 imidazoline receptor ligands have a neuroprotective role in AD. Moreover, co-treatment of AChE inhibitors with neuroprotective agents have shown better effects on the prevention of dementia.Here, we assessed the potential therapeutic effect of the I 2 ligand, donepezil and their combination in 5XFAD mice. Experimental Approach: 5XFAD female mice were treated with low doses (1 mgÁkg À1 Áday À1 ) of LSL60101, donepezil and donepezil plus LSL60101, during 4 weeks per os. Novel object recognition, Morris water maze, open field, elevated plus maze and three-chamber tests were used to evaluate the cognitive and behavioural status after treatment. The effects on AD-like pathology were assessed with immunohistochemistry, western blot, ELISA and qPCR. Key Results: Chronic low-dose treatment with LSL60101 and donepezil reversed cognitive deficits and impaired social behaviour. LSL60101 treatment did not affect anxiety-like behaviour in contrast to donepezil. In the 5XFAD brains, LSL60101 and donepezil/LSL60101 treatments attenuated amyloid-β pathology by decreasing amyloid-β 40 and amyloid-β 42 levels, amyloid-β plaque number and tau hyperphosphorylation. These alterations were accompanied by reduced microglia marker Iba-1 levels and increased Trem2 gene expression. LSL60101 and donepezil decreased glial fibrillary acidic protein (GFAP) astrocytic marker reactivity. However, only LSL60101 and donepezil/LSL60101 treatments significantly increased the synaptic marker levels of post-synaptic density protein 95 and synaptophysin. Conclusion and Implications:Chronic low-dose treatment with selective I 2 -ligands can be an effective treatment for AD and provide insights into combination treatments for symptomatic and disease-modifying drugs.
Brain aging and dementia are current problems that must be solved. The levels of imidazoline 2 receptors (I2-IRs) are increased in the brain in Alzheimer's disease (AD) and other neurodegenerative diseases. We tested the action of the specific and selective I2-IR ligand B06 in a mouse model of accelerated aging and AD, the senescence-accelerated mouse prone 8 (SAMP8) model. Oral administration of B06 for four weeks improved SAMP8 mouse behavior and cognition and reduced AD hallmarks, oxidative stress, and apoptotic and neuroinflammation markers. Likewise, B06 regulated glial excitatory amino acid transporter 2 and N-methyl-D aspartate 2A and 2B receptor subunit protein levels.Calcineurin (CaN) is a phosphatase that controls the phosphorylation levels of cAMP response element-binding (CREB), apoptotic mediator BCL-2-associated agonist of cell death (BAD) and GSK3β, among other molecules. Interestingly, B06 was able to reduce the levels of the CaN active form (CaN A). Likewise, CREB phosphorylation, BAD gene expression, and other factors were modified after B06 treatment. Moreover, phosphorylation of a target of CaN, nuclear factor of activated T-cells, cytoplasmic 1 (NFATC1), was increased in B06-treated mice, impeding the transcription of genes related to neuroinflammation and neural plasticity. In summary, this I2 imidazoline ligand can exert its beneficial effects on age-related conditions by modulating CaN pathway action and affecting several molecular pathways, playing a neuroprotective role in SAMP8 mice. Table 1. Antibodies used in Western blot studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.