The inhibition of the enzyme soluble epoxide hydrolase (sEH) has demonstrated clinical therapeutic effects in several peripheral inflammatory-related diseases, with two compounds that have entered clinical trials. However, the role of this enzyme in the neuroinflammation process has been largely neglected. Herein, we disclose the pharmacological validation of sEH as a novel target for the treatment of Alzheimer's Disease (AD). Of interest, we have found that sEH is upregulated in brains from AD patients. We have evaluated the cognitive impairment and the pathological hallmarks in two models of age-related cognitive decline and AD using three structurally different and potent sEH inhibitors as chemical probes. Our findings supported our expectations on the beneficial effects of central sEH inhibition, regarding of reducing cognitive impairment, tau hyperphosphorylation pathology and the number of amyloid plaques. Interestingly, our results suggest that reduction of inflammation in the brain is a relevant therapeutic strategy for all stages of AD.
Fibroblast growth factor 21 (FGF21), a peptide hormone with pleiotropic effects on carbohydrate and lipid metabolism, is considered a target for the treatment of diabetes. We investigated the role of peroxisome proliferator-activated receptor (PPAR) β/δ deficiency in hepatic FGF21 regulation. Increased Fgf21 expression was observed in the livers of PPARβ/δ-null mice and in mouse primary hepatocytes when this receptor was knocked down by small interfering RNA (siRNA). Increased Fgf21 was associated with enhanced protein levels in the heme-regulated eukaryotic translation initiation factor 2α (eIF2α) kinase (HRI). This increase caused enhanced levels of phosphorylated eIF2α and activating transcription factor (ATF) 4, which is essential for Fgf21-induced expression. siRNA analysis demonstrated that HRI regulates Fgf21 expression in primary hepatocytes. Enhanced Fgf21 expression attenuated tunicamycin-induced endoplasmic reticulum stress, as demonstrated by using a neutralizing antibody against FGF21. Of note, increased Fgf21 expression in mice fed a high-fat diet or hepatocytes exposed to palmitate was accompanied by reduced PPARβ/δ and activation of the HRI-eIF2α-ATF4 pathway. Moreover, pharmacological activation of HRI increased Fgf21 expression and reduced lipid-induced hepatic steatosis and glucose intolerance, but these effects were not observed in Fgf21-null mice. Overall, these findings suggest that HRI is a potential target for regulating hepatic FGF21 levels.
The M2 proton channel of influenza A virus is an integral membrane protein involved in the acidification of the viral interior, a step necessary for the release of the viral genetic material and replication of new virions. The aim of this study is to explore the mechanism of drug (un)binding to the M2 channel in order to gain insight into the structural and energetic features relevant for the development of novel inhibitors. To this end, we have investigated the binding of amantadine (Amt) to the wild type (wt) M2 channel and its V27A variant using multiple independent molecular dynamics simulations, exploratory conventional metadynamics, and multiple-walkers well-tempered metadynamics calculations. The results allow us to propose a sequential mechanism for the (un)binding of Amt to the wt M2 channel, which involves the adoption of a transiently populated intermediate (up state) leading to the thermodynamically favored down binding mode in the channel pore. Furthermore, they suggest that chloride anions play a relevant role in stabilizing the down binding mode of Amt to the wt channel, giving rise to a kinetic trapping that explains the experimentally observed pseudoirreversible inhibition of the wt channel by Amt. We propose that this trapping mechanism underlies the inhibitory activity of potent M2 channel blockers, as supported by the experimental confirmation of the irreversible binding of a pyrrolidine analogue from electrophysiological current assays. Finally, the results reveal that the thermodynamics and kinetics of Amt (un)binding is very sensitive to the V27A mutation, providing a quantitative rationale to the drastic decrease in inhibitory potency against the V27A variant. Overall, these findings pave the way to explore the inhibitory activity of Amt-related analogues in mutated M2 channel variants, providing guidelines for the design of novel inhibitors against resistant virus strains.
Alzheimer’s disease (AD) is the leading cause of dementia. Non-competitive N-Methyl-D-aspartate (NMDA) receptor antagonist memantine improved cognition and molecular alterations after preclinical treatment. Nevertheless, clinical results are discouraging. In vivo efficacy of the RL-208, a new NMDA receptor blocker described recently, with favourable pharmacokinetic properties was evaluated in Senescence accelerated mice prone 8 (SAMP8), a mice model of late-onset AD (LOAD). Oral administration of RL-208 improved cognitive performance assessed by using the three chamber test (TCT), novel object recognition test (NORT), and object location test (OLT). Consistent with behavioural results, RL-208 treated-mice groups significantly changed NMDAR2B phosphorylation state levels but not NMDAR2A. Calpain-1 and Caspase-3 activity was reduced, whereas B-cell lymphoma-2 (BCL-2) levels increased, indicating reduced apoptosis in RL-208 treated SAMP8. Superoxide Dismutase 1 (SOD1) and Glutathione Peroxidase 1 (GPX1), as well as a reduction of hydrogen peroxide (H2O2), was also determined in RL-208 mice. RL-208 treatment induced an increase in mature brain-derived neurotrophic factor (mBDNF), prevented Tropomyosin-related kinase B full-length (TrkB-FL) cleavage, increased protein levels of Synaptophysin (SYN) and Postsynaptic density protein 95 (PSD95). In whole, these results point out to an improvement in synaptic plasticity. Remarkably, RL-208 also decreased the protein levels of Cyclin-Dependent Kinase 5 (CDK5), as well as p25/p35 ratio, indicating a reduction in kinase activity of CDK5/p25 complex. Consequently, lower levels of hyperphosphorylated Tau (p-Tau) were found. In sum, these results demonstrate the neuroprotectant role of RL-208 through NMDAR blockade.
Elevated glucocorticoid (GC) exposure is widely accepted as a key factor in the age-related cognitive decline in rodents and humans. 11β-HSD1 is a key enzyme in the GCs pathway, catalyzing the conversion of 11β-dehydrocorticosterone to corticosterone in mice, with possible implications in neurodegenerative processes and cognitive impairment. Here, we determined the effect of a new 11β-HSD1 inhibitor, RL-118, administered to 12-month-old senescence-accelerated mouse-prone 8 (SAMP8) mice with neuropathological AD-like hallmarks and widely used as a rodent model of cognitive dysfunction. Behavioral tests (open field and object location) and neurodegeneration molecular markers were studied. After RL-118 treatment, increased locomotor activity and cognitive performance were found. Likewise, we found changes in hippocampal autophagy markers such as Beclin1, LC3B, AMPKα, and mTOR, indicating a progression in the autophagy process. In line with autophagy increase, a diminution in phosphorylated tau species (Ser 396 and Ser 404) jointly with an increase in ADAM10 and sAPPα indicated that an improvement in removing the abnormal proteins by autophagy might be implicated in the neuroprotective role of the 11β-HSD1 inhibitor. In addition, gene expression of oxidative stress (OS) and inflammatory markers, such as Hmox1, Aldh2, Il-1β, and Ccl3, were reduced in old treated mice in comparison to that of the control group. Consistent with this, we further demonstrate a significant correlation with autophagy markers and cognitive improvement and significant inverse correlation with autophagy, OS, and neuroinflammation markers. We concluded that inhibition of 11β-HSD1 by RL-118 prevented neurodegenerative processes and cognitive decline, acting on autophagy process, being an additional neuroprotective mechanism not described previously.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.