Purpose The purpose of this paper is to improve the accuracy of the facial expression recognition by using genetic algorithm (GA) with an appropriate fitness evaluation function and Pareto optimization model with two new objective functions. Design/methodology/approach To achieve facial expression recognition with high accuracy, the Haar-like features representation approach and the bilateral filter are first used to preprocess the facial image. Second, the uniform local Gabor binary patterns are used to extract the facial feature so as to reduce the feature dimension. Third, an improved GA and Pareto optimization approach are used to select the optimal significant features. Fourth, the random forest classifier is chosen to achieve the feature classification. Subsequently, some comparative experiments are implemented. Finally, the conclusion is drawn and some future research topics are pointed out. Findings The experiment results show that the proposed facial expression recognition algorithm outperforms ones in the existing literature in terms of both the actuary and computational time. Originality/value The GA and Pareto optimization algorithm are combined to select the optimal significant feature. To improve the accuracy of the facial expression recognition, the GA is improved by adjusting an appropriate fitness evaluation function, and a new Pareto optimization model is proposed that contains two objective functions indicating the achievements in minimizing within-class variations and in maximizing between-class variations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.