One of the unresolved issues when designing a recommender system is the number of ratings -i.e., the profile length -that should be collected from a new user before providing recommendations. A design tension exists, induced by two conflicting requirements. On the one hand, the system must collect "enough" ratings from the user in order to learn her/his preferences and improve the accuracy of recommendations. On the other hand, gathering more ratings adds a burden on the user, which may negatively affect the user experience. Our research investigates the effects of profile length from both a subjective (user-centric) point of view and an objective (accuracy-based) perspective. We carried on an offline simulation with three algorithms, and a set of online experiments involving overall 960 users and four recommender algorithms, to measure which of the two contrasting forces influenced by the number of collected ratings -recommendations relevance and burden of the rating process -has stronger effects on the perceived quality of the user experience. Moreover, our study identifies the potentially optimal profile length for an explicit, rating based, and human controlled elicitation strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.