The proliferation of e-commerce sites and online social media has allowed users to provide preference feedback and maintain profiles in multiple systems, reflecting a variety of their tastes and interests. Leveraging all the user preferences available in several systems or domains may be beneficial for generating more encompassing user models and better recommendations, e.g., through mitigating the cold-start and sparsity problems in a target domain, or enabling personalized crossselling recommendations for items from multiple domains. Cross-domain recommender systems, thus, aim to generate or enhance recommendations in a target domain by exploiting knowledge from source domains. In this chapter, we formalize the cross-domain recommendation problem, unify the perspectives from which it has been addressed, analytically categorize, describe and compare prior work, and identify open issues for future research.
Recommender Systems (RSs) help users search large amounts of digital contents and services by allowing them to identify the items that are likely to be more attractive or useful. RSs play an important persuasion role, as they can potentially augment the users' trust towards in an application and orient their decisions or actions towards specific directions. This article explores the persuasiveness of RSs, presenting two vast empirical studies that address a number of research questions.First, we investigate if a design property of RSs, defined by the statistically measured quality of algorithms, is a reliable predictor of their potential for persuasion. This factor is measured in terms of perceived quality, defined by the overall satisfaction, as well as by how users judge the accuracy and novelty of recommendations. For our purposes, we designed an empirical study involving 210 subjects and implemented seven full-sized versions of a commercial RS, each one using the same interface and dataset (a subset of Netflix), but each with a different recommender algorithm. In each experimental configuration we computed the statistical quality (recall and F-measures) and collected data regarding the quality perceived by 30 users. The results show us that algorithmic attributes are less crucial than we might expect in determining the user's perception of an RS's quality, and suggest that the user's judgment and attitude towards a recommender are likely to be more affected by factors related to the user experience.Second, we explore the persuasiveness of RSs in the context of large interactive TV services. We report a study aimed at assessing whether measurable persuasion effects (e.g., changes of shopping behavior) can be achieved through the introduction of a recommender. Our data, collected for more than one year, allow us to conclude that, (1) the adoption of an RS can affect both the lift factor and the conversion rate, determining an increased volume of sales and influencing the user's decision to actually buy one of the recommended products, (2) the introduction of an RS tends to diversify purchases and orient users towards less obvious choices (the long tail), and (3) the perceived novelty of recommendations is likely to be more influential than their perceived accuracy.Overall, the results of these studies improve our understanding of the persuasion phenomena induced by RSs, and have implications that can be of interest to academic scholars, designers, and adopters of this class of systems.
In this chapter we describe the integration of a recommender system into the production environment of Fastweb, one of the largest European IP Television (IPTV) providers. The recommender system implements both collaborative and content-based techniques, suitable tailored to the specific requirements of an IPTV architecture, such as the limited screen definition, the reduced navigation capabilities, and the strict time constraints. The algorithms are extensively analyzed by means of off-line and on-line tests, showing the effectiveness of the recommender systems: up to 30% of the recommendations are followed by a purchase, with an estimated lift factor (increase in sales) of 15%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.