Newcastle Disease (ND) is a viral disease spread worldwide with a high impact on economy and animal welfare. Vaccination against Newcastle Disease is one of the main control measures in countries such as Germany with endemic occurrence of Newcastle Disease virus in the free ranging bird population. The German Standing Veterinary Committee on Immunization (StIKo Vet) recommends to revaccinate chickens at intervals of six weeks against Newcastle Disease with attenuated live vaccines via drinking water or spray in line with the SPCs (Summary of Product Characteristics) of current vaccines. However, it is still common practice to revaccinate only every twelve weeks because the SPCs of former vaccines proposed a revaccination after checking the antibody titer which based on practical knowledge was typically sufficient for twelve weeks. The aim of this study was to evaluate if a vaccination interval of twelve weeks against Newcastle Disease under field conditions results in sufficient seroconversion to protect flocks. Antibody titers of 810 blood samples from 27 backyard flocks of chickens were analyzed by ELISA-and HI-tests between 69 and 111 days after vaccination of the flocks with attenuated live vaccines of the ND strain Clone 30. Furthermore, data on the flocks such as breed, sex and age were collected through a questionnaire. In this study a sufficient antibody titer was found in 26 of these flocks. Therefore, a vaccination interval of every twelve weeks with the live vaccines tested is suitable for a vaccination protocol against Newcastle Disease. The lack of seroconversion of one flock also emphasizes the need for regular vaccination monitoring by serological testing and re-evaluation of the vaccination process if needed.
Several Mycoplasma spp. are well-known pathogens in poultry. In birds of prey, White Storks ( Ciconia ciconia ), and some waterfowl (Anatidae, Pelecanidae) species, mycoplasmas occur commonly and seem to be apathogenic or commensal and most likely belong to the physiologic microbial flora of the respiratory tract. In other bird species, such as Common Nightingales ( Luscinia megarhynchos ) and tits (Paridae), Mycoplasma spp. are absent in healthy birds. In corvids, the prevalence and role of Mycoplasma spp. in disease remains unclear. In previous studies, Mycoplasma sturni was detected in diseased corvids; however, those studies included only a limited sample size or preselected individuals. We collected tracheal swabs of 97 free-ranging Corvidae, including 68 randomly selected individuals from hunting bags and 29 birds that had been admitted to a veterinary clinic. Tracheal swabs were examined for Mycoplasma spp. using culture and genus-specific PCR. If Mycoplasma spp. were detected, the species were identified by sequencing the 16S ribosomal (r) RNA gene and 16-23S rRNA intergenic transcribed spacer region. Five of 68 (7%) of the hunted birds and nine of 29 (31%) of the birds admitted to the veterinary clinic were PCR positive. In 13 of 14 PCR-positive samples, mycoplasmas were cultured and M. sturni was the only mycoplasmal species identified. None of the positive corvids from the hunting bags had clinical signs, whereas five of nine birds admitted to the veterinary clinic showed apathy, lameness, injuries, or fractures, which may not be associated with mycoplasmal infections. These data support the notion that M. sturni is the Mycoplasma sp. most frequently found in corvids, though its prevalence and ability to cause disease may involve interaction with other aspects of bird health.
The mycoplasma strain ST 57 T was isolated from the trachea of a clinically healthy, free-ranging white stork nestling in Nielitz, Mecklenburg-Western Pomerania, Germany. Strain ST 57 T grew in fried-egg-shaped colonies on mycoplasma (SP4) agar plates and was dependent on sterol for growth. The organism fermented glucose and did not hydrolyse arginine or urea. The optimal growth temperature was 37 C, with a temperature range from 23 to 44 C. Strain ST 57 T could not be identified as a representative of any of the currently described mycoplasma species by alignment of the 16S rRNA gene sequence or 16S-23S intergenic transcribed spacer region, or by immunobinding assays. Thus, this organism appears to be a representative of a novel species, for which the name Mycoplasma ciconiae sp. nov. is proposed. The type strain is ST 57. Four further strains of this species are included in this description (ST 24=DSM 29908, ST 56 Clone 1=DSM 29054, ST 99=DSM 29909, ST 102=DSM 29010). The prevalence of this mycoplasma species in clinically healthy, white stork nestlings in northern Germany was determined. Our species-specific PCR detected 57.8 % (48/83) of the samples positive for M. ciconiae sp. nov. As this species appears to be widespread in the healthy free-ranging white stork population, we conclude that this species is either apathogenic or an opportunistic pathogen in white storks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.