We report on the repositioning accuracy of patient setup achieved with a noninvasive head fixation device for stereotactic radiotherapy. A custom head mask which attaches to our stereotactic radiosurgery head ring assembly is fabricated for each patient. The position and orientation of a patient in the stereotatic space at the time of treatment are determined from analyzing portal films containing images of radio-opaque spheres embedded in a custom mouthpiece. From analysis of 104 setups of 12 patients, we find that the average distance between the treated isocenter and its mean position is 1.8 mm, and that the standard deviations of the position of the treated isocenter in stereotactic coordinate space about its mean position are less than 1.4 mm in translation in any direction and less than 1 degree of rotation about any axis.
We have investigated the energy and field-size dependence of the source position of the electron beams from a Varian Clinac-2,500 accelerator. Three independent experimental methods were used: (1) multipinhole camera (MPC), (2) back projection of the full width at half maximum (FWHM), and (3) the inverse square law (ISL). The positions of the virtual and effective sources were calculated using the multiple Coulomb scattering (MCS) formalism. The results obtained from the MPC agree, within the experimental uncertainties, with the calculated values for the virtual source position. Similarly, the results from the FWHM method agree with the calculations with the exception of those for small field sizes at the lower energies. This is consistent with the fact that both kinds of measurements are not very sensitive to scattering in the photon and electron collimators. In contrast, the source position determined by the ISL method shows strong dependence on field size and energy, and does not agree with the values predicted by the MCS formalism. This is due to contamination from electrons scattered in the x ray and electron collimation system. The techniques and results reported here should be generally applicable to other scatter foil linear accelerators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.