Over 400 California sea lions (Zalophus californianus) died and many others displayed signs of neurological dysfunction along the central California coast during May and June 1998. A bloom of Pseudo-nitzschia australis (diatom) was observed in the Monterey Bay region during the same period. This bloom was associated with production of domoic acid (DA), a neurotoxin that was also detected in planktivorous fish, including the northern anchovy (Engraulis mordax), and in sea lion body fluids. These and other concurrent observations demonstrate the trophic transfer of DA resulting in marine mammal mortality. In contrast to fish, blue mussels (Mytilus edulus) collected during the DA outbreak contained no DA or only trace amounts. Such findings reveal that monitoring of mussel toxicity alone does not necessarily provide adequate warning of DA entering the food web at levels sufficient to harm marine wildlife and perhaps humans.
Quantitative real-time PCR (qPCR) is a commonly used validation tool for confirming gene expression results obtained from microarray analysis; however, microarray and qPCR data often result in disagreement. The current study assesses factors contributing to the correlation between these methods in five separate experiments employing twocolor 60-mer oligonucleotide microarrays and qPCR using SYBR green. Overall, significant correlation was observed between microarray and qPCR results (ρ=0.708, p<0.0001, n=277) using these platforms. The contribution of factors including up-vs. down-regulation, spot intensity, ρ-value, fold-change, cycle threshold (Ct), array averaging, tissue type, and tissue preparation was assessed. Filtering of microarray data for measures of quality (fold-change and ρ-value) proves to be the most critical factor, with significant correlations of ρ>0.80 consistently observed when quality scores are applied.
Potent marine neurotoxins known as brevetoxins are produced by the 'red tide' dinoflagellate Karenia brevis. They kill large numbers of fish and cause illness in humans who ingest toxic filter-feeding shellfish or inhale toxic aerosols 1 . The toxins are also suspected of having been involved in events in which many manatees and dolphins died, but this has usually not been verified owing to limited confirmation of toxin exposure, unexplained intoxication mechanisms and complicating pathologies 2-4 . Here we show that fish and seagrass can accumulate high concentrations of brevetoxins and that these have acted as toxin vectors during recent deaths of dolphins and manatees, respectively. Our results challenge claims that the deleterious effects of a brevetoxin on fish (ichthyotoxicity) preclude its accumulation in live fish, and they reveal a new vector mechanism for brevetoxin spread through food webs that poses a threat to upper trophic levels.In the spring of 2002, 34 endangered Florida manatees (Trichechus manatus latirostris) died in southwest Florida, and 107 bottlenose dolphins (Tursiops truncatus) died in waters off the Florida panhandle in the spring of 2004. In both of these unusual mortality events, extensive water surveys revealed that only low concentrations of K. brevis were present.We tested for the presence of brevetoxin in the fluids and tissues of 63 of these animals (27 manatees, 36 dolphins) and found very high concentrations in the tissues of all of them (see Supplementary information accompanies this communication on Nature's website.
Certain marine algae produce potent toxins that impact human health through the consumption of contaminated shellfish and finfish and through water or aerosol exposure. Over the past three decades, the frequency and global distribution of toxic algal incidents appear to have increased, and human intoxications from novel algal sources have occurred. This increase is of particular concern, since it parallels recent evidence of large-scale ecologic disturbances that coincide with trends in global warming. The extent to which human activities have contributed to their increase therefore comes into question. This review summarizes the origins and health effects of marine algal toxins, as well as changes in their current global distribution, and examines possible causes for the recent increase in their occurrence. Key words: amnesic shellfish poisoning, diarrhetic shellfish poisoning, dinoflagellates, domoic acid, global climate change, harmful algal blooms, marine toxins, neurotoxic shellfish poisoning, okadaic acid, paralytic shellfish poisoning. Marine algal toxins are responsible for an array of human illnesses associated with consumption of seafood and, in some cases, respiratory exposure to aerosolized toxins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.