Interaction of the human antimicrobial peptide LL-37 with lipid monolayers has been investigated by a range of complementary techniques including pressure-area isotherms, insertion assay, epifluorescence microscopy, and synchrotron x-ray scattering, to analyze its mechanism of action. Lipid monolayers were formed at the air-liquid interface to mimic the surface of the bacterial cell wall and the outer leaflet of erythrocyte cell membrane by using phosphatidylglycerol (DPPG), phosphatidylcholine (DPPC), and phosphatidylethanolamine (DPPE) lipids. LL-37 is found to readily insert into DPPG monolayers, disrupting their structure and thus indicating bactericidal action. In contrast, DPPC and DPPE monolayers remained virtually unaffected by LL-37, demonstrating its nonhemolytic activity and lipid discrimination. Specular x-ray reflectivity data yielded considerable differences in layer thickness and electron-density profile after addition of the peptide to DPPG monolayers, but little change was seen after peptide injection when probing monolayers composed of DPPC and DPPE. Grazing incidence x-ray diffraction demonstrated significant peptide insertion and lateral packing order disruption of the DPPG monolayer by LL-37 insertion. Epifluorescence microscopy data support these findings.
Colloidal silica is used in many applications including catalysis, pharmaceuticals, and coatings. Although naturally formed silica materials are widely available, they are often in forms that are difficult to process or are even harmful to health. Therefore, uniform colloidal silicas are generally manufactured using synthetic chemical processes. While established high temperature gaseous synthesis methods fall out of favor in our energy conscious society, liquid synthesis methods are current industrial leaders. The precipitated silica method provides the majority share of commercially produced specialty silicas with its economic advantages predicted to continue to grow in the future. The biomimetic method and microemulsion methods of synthesis provide a superior level of surface chemistry and morphological control than current industrial processes and are the major focus of current silica synthesis research. Movement toward more tailor-made products and ecologically friendly production methods will likely provide incentive for biomimetic methods, in particular, to take more of a market share. However, the lack of procedures to viably scale up the biomimetic and microemulsion methods still forms significant gaps in the literature. In this review, the current methods of colloidal silica synthesis are discussed alongside significant models and mechanisms of silica formation.
A novel one-pot neutral synthesis using bioinspired polymers to fabricate thiol-nanoparticles is presented. The thiol-particles may be directly tethered to metal surfaces such as gold, allowing the production of self-assembled nanostructured biocatalytic or biosensor surfaces. This one-pot method has also been used to entrap enzymes within the thiol-nanoparticles; it is apparent that once enzyme entrapment is carried out a bimodal distribution of particles is formed, with particles of one mode being very similar in size to thiol-nanoparticles without enzyme entrapped, and particles of the other mode being much larger in size. To this end, efforts have been made to separate the two modes of particles for the sample containing enzyme and it has been observed that the larger mode thiol-nanoparticles do indeed contain significant amounts of enzyme in comparison to the smaller mode ones. As the enzyme-containing thiol-nanoparticles can now be isolated, this means that there are many future possibilities for the use of thiol-particles containing enzyme, as they may be used in a wide range of processes and devices which require catalytic functionalized surfaces, such as biosensors and biocatalytic reactors.
In nature, some peptides induce precipitation of silicic acid into silica nanoparticles such as is found in marine algae called diatoms. However, polybasic polymers can act as peptide mimics; one such polymer, polyethyleneimine (PEI), has the advantage that it is stable at room temperature and is inexpensive, in comparison with synthetic peptides. We describe the fabrication and characterization of biosilicate nanoparticles formed by mimicking the peptides using PEI. Brownian motion nanoparticle tracking analysis and field emission gun scanning electron microscopy have been used for the first time to characterize nanoparticles made with tetramethyl orthosilicate (TMOS) and PEI to investigate the fundamental factors that affect particle properties. These factors include the effect of phosphate concentration, PEI molecular weight, TMOS concentration, and species of alkoxy-silane used. The properties of the particles are compared with other particles made with polymers that induce silication. Our results show that using PEI gives differences in particle size compared with previous work using other polymers that induce silication. The entrapment of enzymes during the silication process, rationale for using nonphosphate and phosphate buffers during enzyme entrapment, and the analysis of enzyme activity are also presented. Because enzymes can be entrapped during fabrication, it means that there are many future possibilities for the use of silicate nanoparticles containing enzymes, such as biosensors and biocatalytic reactors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.