SummaryHuman immunodeficiency virus 1 (HIV1) infection is associated with severe psoriasis, B cell lymphoma, and Kaposi's sarcoma. A deregulated production of interleukin 6 (IL-6) has been implicated in the pathogenesis of these diseases. The molecular mechanisms underlying the abnormal IL-6 secretion of HIVl-infected cells may include transactivation of the IL-6 gene by HIV1.To test this hypothesis, we used the plL6Pr-chloramphenicol acetyltransferase (CAT) plasmid, an IL-6 promoter-CAT construct, as a target of the transactivating function of the HIV1 TAT protein. By cotransfecting the pIL6Pr-CAT and the tat-expressing pSVT8 plasmid in MC3 B-lymphoblastoid or in HeLa epithelial cells, we observed that TAT transactivates the human IL-6 promoter. These results were confirmed when plL6Pr-CAT was transfected in MC3 or HeLa cells that constitutively expressed the tat gene in a sense (pSVT8 cells) or antisense (pSVT10 cells) orientation. 5' deletion plasmids of plL6Pr-CAT, in which regions at -658, -287, and -172 were inserted 5' to the cat gene, were transiently transfected in pSVT10 and pSVT8 cells and showed that TAT-induced activation of the IL-6 promoter required a minimal region located between -287 and -54 bp. Moreover, experiments with plasmids carrying the -658, -287, and -172 bp regions of the IL-6 promoter inserted downstream to a TAR-deleted HIV1-LTR identified the sequence of -172 to -54 as the minimal region of the IL-6 promoter required for TAT to transactivate the TAR-deleted HIV1-LTR. By DNA-protein binding experiments, tat-transfected cells expressed a consistent increase in KB and nuclear factor (NF)-IL-6 binding activity. Accordingly, the pDRCAT and IL-lkEK9CAT, carrying tandem repeats of NF-KB or NF-IL6 binding motifs, respectively, were activated in TAT-expressing cells. The biological relevance of the TAT-induced IL-6 secretion was addressed by generating 7TD1 cells, an IL-6-dependent mouse cell line, stably expressing the tat gene. These tat-positive cells expressed the endogenous IL-6 gene, secreted high amounts of murine IL-6, and grew efficiently in the absence of exogenous IL-6. Moreover, the tat-positive 7TD1 cells sustained the growth of parental 7TD1 cells and showed a dramatic increase in their tumorigenic potency. These results suggest that TAT protein may play a role in the pathogenesis of some HIVl-associated diseases by modulating the expression of host cellular genes.
Live-attenuated human immunodeficiency viruses (HIVs) are candidates for Acquired Immunodeficiency Syndrome (AIDS) vaccine. Based on the simian immunodeficiency virus (SIV) model for AIDS, loss-of-function (e.g. deletion of accessory genes such as nef) has been forwarded as a primary approach for creating enfeebled, but replication-competent, HIV-1/SIV. Regrettably, recent evidence suggests that loss-of-function alone is not always sufficient to prevent the emergence of virulent mutants. New strategies that attenuate via mechanisms distinct from loss-of-function are needed for enhancing the safety phenotype of viral genome. Here, we propose gain-of-function to be used simultaneously with loss-of-function as a novel approach for attenuating HIV-1. We have constructed an HIV-1 genome carrying the cDNA of a proteolysis-resistant nuclear factor-B inhibitor (IB-␣S32/36A) in the nef region. HIV-1 expressing IB-␣S32/36A down-regulates viral expression and is highly attenuated in both Jurkat and peripheral blood mononuclear cells. We provide formal proof that the phenotypic and attenuating characteristics of IB-␣S32/36A permit its stable maintenance in a live, replicating HIV-1 despite 180 days of forced ex vivo passaging in tissue culture. As compared with other open-reading frames embedded into HIV/SIV genome, this degree of stability is unprecedented. Thus, IB-␣S32/36A offers proof-of-principle that artifactually gained functions, when used to attenuate the replication of live HIV-1, can be stable. These findings illustrate gain-of-function as a feasible strategy for developing safer live-attenuated HIVs to be tested as candidates for AIDS vaccine.
The new goal of anticancer agent research is the screening of natural origin drugs with lower systemic adverse effects than synthetic compounds. Here, we focus on curcumin, an important polyphenolic pigment classically used as spice in the Indian cuisine. The molecule has high pleiotropic activities including strong antioxidant and anti-inflammatory properties. However, its clinical potential is limited due its low solubility and bioavailability. We have developed a layer by layer functionalization of Fe3 O4 nanoparticles (nano-Fe3 O4 ) by coating biodegradable polyelectrolyte multilayers such as Dextran (DXS) and Poly(l-lysine) (PLL). Physico-chemical studies were performed to obtain a high upload of curcumin in Fe3 O4 nanoparticles. Nano-Fe3 O4 were then tested against an ovarian cancer cell line, SKOV-3, to demonstrate their therapeutic efficacy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.