The concept of Ambient Intelligence has been developed during a series of ISTAG (Information Societies Technology Advisory Group) and other meetings as a guiding vision to give an overall direction to Europe's Information Societies Technology program. Ambient Intelligence is essentially an elaboration of Mark Weiser's vision of Ubiquitous but Calm Computing which stresses the importance of social and human factors as well as developing the base technologies on which aspects of the vision are founded. Although Ambient Intelligence covers a large range of concerns, both human and technical, there are some technologies which might be excluded. They are characterised by Mark Weiser's statement about Ubiquitous computing: "Ubiquitous computing is roughly the opposite of virtual reality. Where virtual reality puts people inside a computergenerated world, ubiquitous computing forces the computer to live out here in the world with people.". Seen in this light, Ambient Intelligence is the limit of a process which introduces the technology into people's lives in such a way that the introduction never feels like a conscious learning curve: no special interface is needed because human experience is already a rich 'Manual' of ways of interfacing to changing systems and services. Somehow, we need to create technology that leverages this powerful human resource rather than trying to suppress it by requiring humans to participate in inflexible interaction protocols of the sort supported by current call center technology. A distributed system for ambient intelligence needs to solve several problems, the main one being task allocation and resource management. In particular, one can suppose to subdivide a wide area monitoring system in several elementary logical tasks to be allocated to physical processors that can be constituted by standard PCs, but also intelligent sensors or embedded processors. This paper analyses the problem of distribution of intelligence in detail and proposes a novel technique for dynamic task allocation and reconfiguration in a distributed system. A formalization of task allocation problem is proposed and a system that is able to automatically download and run logical modules onto physical processors is described. Proposed results demonstrate the validity of this approach.
Arduino is a famous board, which incorporates serial communication interfaces, including universal serial bus (USB) and an integrated development environment (IDE) based on Processing, a programming language that supports C and C++. It consists of a microcontroller with several other components that provide easy interconnections with other devices. Arduino and its components have been studied during the class of Computer Architecture for the degree in Computer Science at the University of Cagliari in 2016. At the end of the class, seven groups of students have been selected and chosen to carry out a device prototype on top of Arduino and show their methodology, the sensors they embedded on top, how data could be extracted, collected, stored in database for further processing and analytics. The development has been performed following the open source best practices; documentation and codes of these projects have been made online for free downloading and sharing in order to further contribute to the advancement and widespread usage of the Arduino platform.
Arduino is a famous board, which incorporates serial communication interfaces, including universal serial bus (USB), and an integrated development environment (IDE) based on Processing, a programming language that supports C and C++. It consists of a microcontroller with several other components that provide easy interconnections with other devices. Arduino and its components have been studied during the class of Computer Architecture for the degree in Computer Science at the University of Cagliari in 2016. At the end of the class, seven groups of students have been selected and chosen to carry out a device prototype on top of Arduino and show their methodology, the sensors they embedded on top, how data could be extracted, collected, stored in database for further processing and analytics. The development has been performed following the open source best practices, documentation and codes of these projects have been made online for free downloading and sharing in order to further contribute to the advancement and widespread usage of the Arduino platform.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.