Congenital cytomegalovirus (cCMV) infection is the most common congenital viral infection and is the leading non-genetic cause of sensorineural hearing loss (SNLH) and an important cause of neurodevelopmental disabilities. The risk of intrauterine transmission is highest when primary infection occurs during pregnancy, with a higher rate of vertical transmission in mothers with older gestational age at infection, while the risk of adverse fetal effects significantly increases if fetal infection occurs during the first half of pregnancy. Despite its prevalence and morbidity among the neonatal population, there is not yet a standardized diagnostic test and therapeutic approach for cCMV infection. This narrative review aims to explore the latest developments in the diagnosis and treatment of cCMV infection. Literature analysis shows that preventive interventions other than behavioral measures during pregnancy are still lacking, although many clinical trials are currently ongoing to formulate a vaccination for women before pregnancy. Currently, we recommend using a PCR assay in blood, urine, and saliva in neonates with suspected cCMV infection. At present, there is no evidence of the benefit of antiviral therapy in asymptomatic infants. In the case of symptomatic cCMV, we actually recommend treatment with oral valganciclovir for a duration of 12 months. The effectiveness and tolerability of this therapy option have proven effective for hearing and neurodevelopmental long-term outcomes. Valganciclovir is reserved for congenitally-infected neonates with the symptomatic disease at birth, such as microcephaly, intracranial calcifications, abnormal cerebrospinal fluid index, chorioretinitis, or sensorineural hearing loss. Treatment with antiviral drugs is not routinely recommended for neonates with the mildly symptomatic disease at birth, for neonates under 32 weeks of gestational age, or for infants more than 30 days old because of insufficient evidence from studies. However, since these populations represent the vast majority of neonates and infants with cCMV infection and they are at risk of developing late-onset sequelae, a biomarker able to predict long-term sequelae should also be found to justify starting treatment and reducing the burden of CMV-related complications.
BackgroundDuration of humoral and cellular memory in children previously infected SARS-CoV-2 or vaccinated and subsequent risk of reinfection is still not fully elucidated.MethodsSystematic review of studies retrieved from medical databases and article reference lists.ResultsFrom 2420 identified articles, 24 met the inclusion criteria. Children infected during the pre-omicron era developed long lasting (at least 10-12 months) humoral and cellular immunity against pre-Omicron SARS-CoV-2 variants, but have reduced in vitro cross-reactivity against Omicron. Conversely, although vaccination has a limited efficacy in preventing new infection with pre-Omicron and Omicron variants, in vitro studies suggested that vaccine-induced immunity provides better in vitro cross-neutralization against pre-Omicron and Omicron variants. Preprints published after the period of inclusion of our review suggested that overall risk of infection after Omicron infection is reduced, but children developed weak neutralizing responses in about half cases.ConclusionsAvailable evidence, although limited, suggested a long-lasting but unperfect protection of previous infections or vaccination against pre-Omicron and Omicron variants. Based on our findings, it might be reasonable to offer families of children infected before Omicron a booster vaccination. A similar indication should be proposed also for those infected with Omicron, specifically for more fragile children at higher risk of COVID-19-related complications, based on better cross-variant neutralisation induced by vaccination.Systematic review registrationPROSPERO, identifier ID 353189.
Children infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can suffer from severe coronavirus disease 2019 (COVID-19). However, compared to adults and the elderly, susceptibility to SARS-CoV-2 infection in children seems to be lower; when infection does develop, most infected children remain asymptomatic or develop a mild disease. Understanding why children seem generally protected from severe COVID-19 and only rarely develop clinical conditions that can cause hospitalization, admission to the pediatric intensive care unit and death can be important. More details on the mechanism of action of SARS-CoV-2 could be defined. Moreover, the role played by children in virus diffusion should be better analyzed, and the development of effective preventive and therapeutic measures against COVID-19 could be favored. The main aim of this paper is to discuss the present knowledge on immunological and molecular mechanisms that could explain differences in COVID-19 clinical manifestations between children and adults. Literature analysis showed that although most children are clearly protected from the development of severe COVID-19, the reasons for this peculiarity are not fully understood. Developmental variations in immune system function together with the potential role of repeated antigen stimulation in the first periods of life on innate immunity are widely studied. As the few children who develop the most severe form of pediatric COVID-19 have certain alterations in the immune system response to SARS-CoV-2 infection, studies about the relationships between SARS-CoV-2 and the immune system of the host are essential to understand the reasons for the age-related differences in the severity of COVID-19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.