This study addresses the optimization of the location of a radioactive-particle sensor on a drone. Based on the analysis of the physical process and of the boundary conditions introduced in the model, computational fluid dynamics simulations were performed to analyze how the turbulence caused by drone propellers may influence the response of the sensors. Our initial focus was the detection of a small amount of radioactivity, such as that associated with a release of medical waste. Drones equipped with selective low-cost sensors could be quickly sent to dangerous areas that first responders might not have access to and be able to assess the level of danger in a few seconds, providing details about the source terms to Radiological-Nuclear (RN) advisors and decision-makers. Our ultimate application is the simulation of complex scenarios where fluid-dynamic instabilities are combined with elevated levels of radioactivity, as was the case during the Chernobyl and Fukushima nuclear power plant accidents. In similar circumstances, accurate mapping of the radioactive plume would provide invaluable input-data for the mathematical models that can predict the dispersion of radioactivity in time and space. This information could be used as input for predictive models and decision support systems (DSS) to get a full situational awareness. In particular, these models may be used either to guide the safe intervention of first responders or the later need to evacuate affected regions.
With the aim to have risk mitigation for people and first responders, active remote sensing standoff detection is a fruitful technology, both in case of accidental (natural or incidental) or intentional dispersion in the environment of volatile chemical substances. Nowadays, several laser-based methodologies could be put in place to perform extensive areal monitoring. The present study regards the proposal for a new system architecture derived from the integration of a low-cost laser-based network of detectors for pollutants interfaced with a more sophisticated layout mounted on an unmanned aerial vehicle (UAV) able to identify the nature and the amount of a release. With this system set up, the drone will be activated by the alarm triggered by the laser-based network when anomalies are detected. The area will be explored by the drone with a more accurate set of sensors for identification to validate the detection of the network of Lidar systems and to sample the substance in the focus zone for subsequent analysis. In this work, methodologies and requirements for the standoff detection and the identification features chosen for this integrated system are described. The work aims at the definition of a new approach to the problem through the integration of different technologies and tools in the operative field experiments. Some preliminary results in support of the suitability of the integration hypothesis proposed are presented. This study gives rise to an integrated system to be furtherly tested in a real environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.