We assessed the effect of surgical aortic valve replacement (SAVR) on cardiovascular and cerebrovascular controls via spontaneous variability analyses of heart period, approximated as the temporal distance between two consecutive R-wave peaks on the electrocardiogram (RR), systolic, diastolic and mean arterial pressure (SAP, DAP and MAP) and mean cerebral blood flow (MCBF). Powers in specific frequency bands, complexity, presence of nonlinear dynamics and markers of cardiac baroreflex and cerebral autoregulation were calculated. Variability series were acquired before (PRE) and after (POST) SAVR in 11 patients (age: 76±5 yrs, 7 males) at supine resting and during active standing. Parametric spectral analysis was performed based on the autoregressive model. Complexity was assessed via a local nonlinear prediction approach exploiting the k-nearest-neighbor strategy. The presence of nonlinear dynamics was checked by comparing the complexity marker computed over the original series with the distribution of the same index assessed over a set of surrogates preserving distribution and power spectral density of the original series. Cardiac baroreflex and cerebral autoregulation were estimated by assessing the transfer function from SAP to RR and from MAP to MCBF and squared coherence function via the bivariate autoregressive approach. We found that: i) orthostatic challenge had no effect on cardiovascular and cerebrovascular control markers in PRE; ii) RR variance was significantly reduced in POST; iii) complexity of SAP, DAP and MAP variabilities increased in POST with a greater likelihood of observing nonlinear dynamics over SAP compared to PRE at supine resting; iv) the amplitude of MCBF variations and MCBF complexity in POST remained similar to PRE; v) cardiac baroreflex sensitivity decreased in POST, while cerebrovascular autoregulation was preserved. SAVR induces important changes of cardiac and vascular autonomic controls and baroreflex regulation in patients exhibiting poor reactivity of cardiovascular regulatory mechanisms, while cerebrovascular autoregulation seems to be less affected.
Respiration disturbs cardiovascular and cerebrovascular controls but its role is not fully elucidated. Methods: Respiration can be classified as a confounder if its observation reduces the strength of the causal relationship from source to target. Respiration is a suppressor if the opposite situation holds. We prove that a confounding/suppression (C/S) test can be accomplished by evaluating the sign of net redundancy/synergy balance in the predictability framework based on multivariate autoregressive modelling. In addition, we suggest that, under the hypothesis of Gaussian processes, the C/S test can be given in the transfer entropy decomposition framework as well. Experimental protocols: We applied the C/S test to variability series of respiratory movements, heart period, systolic arterial pressure, mean arterial pressure, and mean cerebral blood flow recorded in 17 pathological individuals (age: 64±8 yrs; 17 males) before and after induction of propofol-based general anesthesia prior to coronary artery bypass grafting, and in 13 healthy subjects (age: 27±8 yrs; 5 males) at rest in supine position and during head-up tilt with a table inclination of 60°. Results: Respiration behaved systematically as a confounder for cardiovascular and cerebrovascular controls. In addition, its role was affected by propofol-based general anesthesia but not by a postural stimulus of limited intensity. Conclusion: The C/S test can be fruitfully exploited to categorize the role of respiration over causal variability interactions. Significance: The application of the C/S test could favor the comprehension of the role of respiration in cardiovascular and cerebrovascular regulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.