IntroductionThe aim of this study was to present two outbreaks of bovine abortion due to Leptospira infection in cattle herds located in the northern part of Sicily (Italy). The animals were positive for Leptospira interrogans serogroup Sejroe serovar Hardjo in a microscopic agglutination test (MAT).Material and MethodsA total of 23 Charolaise cows (farm A) and 75 Limousine bulls and Cinisara and Modicana cows (farm B) were enrolled in this study. The blood samples were collected from all subjects at the following time points: before a cycle of intramuscular treatment with oxytetracycline dihydrate (T0), after 5–6 weeks from the treatment (T1), and every 10 weeks until seronegativisation (T2 in Farm A and T3 in Farm B). A serological test (MAT) was used for the diagnosis of leptospirosis.ResultsTwo samples from farm A (2/23) and 29 samples from farm B (29/75) were positive to Leptospira interrogans, serogroup Sejroe, serovar Hardjo in the MAT. Leptospira spp. DNA was detected by real-time PCR in the urine sample of one positive cow on farm A, and in placenta and brain samples belonging to one aborted foetus on farm B.ConclusionIt is important to use serological and molecular diagnostic techniques complementarily to identify infected individuals.
Chagas disease is a chronic systemic infection transmitted by Trypanosoma cruzi. Its life cycle consists of different stages in vector insects and host mammals. Trypanosoma cruzi strains cause different clinical manifestations of Chagas disease alongside geographic differences in morbidity and mortality. Natural killer cells provide the cytokine interferon-gamma in the initial phases of T. cruzi infection. Phagocytes secrete cytokines that promote inflammation and activation of other cells involved in defence. Dendritic cells, monocytes and macrophages modulate the adaptive immune response, and B lymphocytes activate an effective humoral immune response to T. cruzi. This review focuses on the main immune mechanisms acting during T. cruzi infection, on the strategies activated by the pathogen against the host cells, on the processes involved in inflammasome and virulence factors and on the new strategies for preventing, controlling and treating this disease.
Coxiella burnetii is an obligate intracellular Gram-negative bacterium and the causative agent of a worldwide zoonosis known as Q fever. The pathogen invades monocytes and macrophages, replicating within acidic phagolysosomes and evading host defenses through different immune evasion strategies that are mainly associated with the structure of its lipopolysaccharide. The main transmission routes are aerosols and ingestion of fomites from infected animals. The innate immune system provides the first host defense against the microorganism, and it is crucial to direct the infection towards a self-limiting respiratory disease or the chronic form. This review reports the advances in understanding the mechanisms of innate immunity acting during C. burnetii infection and the strategies that pathogen put in place to infect the host cells and to modify the expression of specific host cell genes in order to subvert cellular processes. The mechanisms through which different cell types with different genetic backgrounds are differently susceptible to C. burnetii intracellular growth are discussed. The subsets of cytokines induced following C. burnetii infection as well as the pathogen influence on an inflammasome-mediated response are also described. Finally, we discuss the use of animal experimental systems for studying the innate immune response against C. burnetii and discovering novel methods for prevention and treatment of disease in humans and livestock.
Borrelia burgdorferi is a bacterial pathogen transmitted by Ixodes ticks and is responsible for Lyme disease in both humans and dogs. The aim of this work was to evaluate B. burgdorferi diffusion among stray dogs in Palermo (Sicily, Italy) by serological methods in order to study the risk factors associated with the infection. Serum and blood samples of 316 dogs were collected from a shelter in Palermo, and were analyzed for the presence of antibodies against B. burgdorferi by indirect immunofluorescence assay (IFA), and of the ospA gene by real-time PCR, respectively. Seventeen sera (5.4%) were positive for the antibodies via IFA and one blood (0.3%) for ospA via real time PCR. On the basis of serological results, the evaluation of the potential risk factors (sex, age, breed and coat color) was carried out. The multivariate analysis indicated that male sex is a factor significantly associated with B. burgdorferi seropositivity. This study confirms that male dogs have a higher risk of developing the disease than females, and represents the first investigation on the spread of B. burgdorferi among stray dogs in Sicily.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.