Aim: To evaluate the effect of an acute L-dopa administration on eye-closed resting state electroencephalographic (EEG) activity of cognitively preserved Parkinsonian patients.Methods: We examined 24 right-handed patients diagnosed as uncomplicated probable Parkinson’s disease (PD). Each patient underwent Unified Parkinson’s Disease Rating Scale (UPDRS)-part-III evaluation before and 60 min after an oral load of L-dopa-methyl-ester/carbidopa 250/25 mg. Resting condition eyes-closed EEG data were recorded both pre- and post L-dopa load. Absolute EEG power values were calculated at each scalp derivation for Delta, Theta, Alpha and Beta frequency bands. UPDRS scores (both global and subscale scores) and EEG data (power values of different frequency bands for each scalp derivation) were submitted to a statistical analysis to compare Pre and Post L-Dopa conditions. Finally, a correlation analysis was carried out between EEG spectral content and UPDRS scores.Results: Considering EEG power spectral analysis, no statistically significant differences arose on Delta and Theta bands after L-dopa intake. Conversely, Alpha and Beta rhythms significantly increased on centro-parietal scalp derivations, as a function of L-dopa administration. Correlation analysis indicated a significant negative correlation between Beta power increase on centro-parietal areas and UPDRS subscores (Rigidity of arms and Bradykinesia). A minor significant negative correlation was also found between Alpha band increase and resting tremor.Conclusions: Assuming that a significant change in EEG power spectrum after L-dopa intake may be related to dopaminergic mechanisms, our findings are consistent with the hypothesis that dopaminergic defective networks are implicated in cortical oscillatory abnormalities at rest in non-demented PD patients.
Our results demonstrated that early stridor onset is an independent predictor for shorter survival and that tracheostomy could control stridor, influencing disease duration.
This study investigates cortical involvement during ankle passive mobilization in healthy subjects, and is part of a pilot study on stroke patient rehabilitation. Magnetoencephalographic signals from the primary sensorimotor areas devoted to the lower limb were collected together with simultaneous electromyographic activities from tibialis anterior (TA). This was done bilaterally, on seven healthy subjects (aged 29 ± 7), during rest, left and right passive ankle dorsiflexion (imparted through the SHADE orthosis, O-PM, or neuromuscular electrical stimulation, NMES-PM), and during active isometric contraction (IC-AM). The effects of focussing attention on ankle passive movements were considered. Primary sensory (FS(S1)) and motor (FS(M1)) area activities were discriminated by the Functional Source Separation algorithm. Only contralateral FS(S1) was recruited by common peroneal nerve stimulation and only contralateral FS(M1) displayed coherence with TA muscular activity. FS(M1) showed higher power of gamma rhythms (33-90 Hz) than FS(S1). Both sources displayed higher beta (14-32 Hz) and gamma powers in the left than in the right hemisphere. Both sources displayed a bilateral reduction of beta power during IC-AM with respect to rest. Only FS(S1) beta band power reduced during O-PM. No beta band modulation was observed of either source during NMES-PM. Mutual FS(S1)-FS(M1) coherence in gamma2 band (61-90 Hz) showed a slight trend towards an increase when focussing attention during O-PM. Somatosensory and motor counterparts of lower limb cortical representations were discriminated in both hemispheres. SHADE was effective in generating repeatable dorsiflexion and inducing primary sensory involvement similarly to voluntary movement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.