We discuss how a large class of regularization methods, collectively known as spectral regularization and originally designed for solving illposed inverse problems, gives rise to regularized learning algorithms.All these algorithms are consistent kernel methods which can be easily implemented. The intuition behind their derivation is that the same principle allowing to numerically stabilize a matrix inversion problem * DISI, Università di Genova, v.
We present a computational model and a system for the automated recognition of emotions starting from full-body movement. Three-dimensional motion data of full-body movements are obtained either from professional optical motion-capture systems (Qualisys) or from low-cost RGB-D sensors (Kinect and Kinect2). A number of features are then automatically extracted at different levels, from kinematics of a single joint to more global expressive features inspired by psychology and humanistic theories (e.g., contraction index, fluidity, and impulsiveness). An abstraction layer based on dictionary learning further processes these movement features to increase the model generality and to deal with intraclass variability, noise, and incomplete information characterizing emotion expression in human movement. The resulting feature vector is the input for a classifier performing real-time automatic emotion recognition based on linear support vector machines. The recognition performance of the proposed model is presented and discussed, including the tradeoff between precision of the tracking measures (we compare the Kinect RGB-D sensor and the Qualisys motion-capture system) versus dimension of the training dataset. The resulting model and system have been successfully applied in the development of serious games for helping autistic children learn to recognize and express emotions by means of their full-body movement
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.