Late Quaternary separation of Britain from mainland Europe is considered to be a consequence of spillover of a large proglacial lake in the Southern North Sea basin. Lake spillover is inferred to have caused breaching of a rock ridge at the Dover Strait, although this hypothesis remains untested. Here we show that opening of the Strait involved at least two major episodes of erosion. Sub-bottom records reveal a remarkable set of sediment-infilled depressions that are deeply incised into bedrock that we interpret as giant plunge pools. These support a model of initial erosion of the Dover Strait by lake overspill, plunge pool erosion by waterfalls and subsequent dam breaching. Cross-cutting of these landforms by a prominent bedrock-eroded valley that is characterized by features associated with catastrophic flooding indicates final breaching of the Strait by high-magnitude flows. These events set-up conditions for island Britain during sea-level highstands and caused large-scale re-routing of NW European drainage.
S U M M A R YOn 1580 April 6 one of the most destructive earthquakes of northwestern Europe took place in the Dover Strait (Pas de Calais). The epicentre of this seismic event, the magnitude of which is estimated to have been about 6.0, has been located in the offshore continuation of the North Artois shear zone, a major Variscan tectonic structure that traverses the Dover Strait. The location of this and two other moderate magnitude historical earthquakes in the Dover Strait suggests that the North Artois shear zone or some of its fault segments may be presently active. In order to investigate the possible fault activity in the epicentral area of the AD 1580 earthquake, we have gathered a large set of bathymetric and seismic-reflection data covering the almost-entire width of the Dover Strait. These data have revealed a broad structural zone comprising several subparallel WNW-ESE trending faults and folds, some of them significantly offsetting the Cretaceous bedrock. The geophysical investigation has also shown some indication of possible Quaternary fault activity. However, this activity only appears to have affected the lowermost layers of the sediment infilling Middle Pleistocene palaeobasins. This indicates that, if these faults have been active since Middle Pleistocene, their slip rates must have been very low. Hence, the AD 1580 earthquake appears to be a very infrequent event in the Dover Strait, representing a good example of the moderate magnitude earthquakes that sometimes occur in plate interiors on faults with unknown historical seismicity.
Prominent landforms, either buried or preserved at the seafloor, provide important constraints on the processes that led to the opening and present-day configuration of the Dover Strait. Here, we extend previous investigations on two distinct landform features, the Fosse Dangeard and Lobourg Channel, to better understand the poly-phase history of their formation and inferences for the opening and Pleistocene evolution of the Dover Strait.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.