Over the past decade, messenger RNA (mRNA) has emerged as potent and flexible platform for the development of novel effective cancer immunotherapies. Advances in non-viral gene delivery technologies, especially the tremendous progress in lipid nanoparticles' manufacturing, have made possible the implementation of mRNA-based antitumor treatments. Several mRNA-based immunotherapies have demonstrated antitumor effect in preclinical and clinical studies, and marked successes have been achieved most notably by its implementation in therapeutic vaccines, cytokines therapies, checkpoint blockade and chimeric antigen receptor (CAR) cell therapy. In this review, we summarize recent advances in the development of lipid nanoparticles for mRNA-based immunotherapies and their applications in cancer treatment. Finally, we also highlight the variety of immunotherapeutic approaches through mRNA delivery and discuss the main factors affecting transfection efficiency and tropism of mRNA-loaded lipid nanoparticles in vivo.
Cancer vaccines have been widely explored as a key tool for effective cancer immunotherapy. Despite
a convincing rationale behind cancer vaccines, extensive past efforts were unsuccessful in mediating significantly
relevant anti-tumor activity in clinical studies. One of the major reasons for such poor outcome, among others, is
the low immunogenicity of more traditional vaccines, such as peptide-, protein- and DNA- based vaccines.
Recently, mRNA emerged as a promising alternative to traditional vaccine strategies due to its high immunogenicity,
suitability for large-scale and low-cost production, and superior safety profile. However, the clinical
application of mRNA-based anti-cancer vaccines has been limited by their instability and inefficient in vivo delivery.
Recent technological advances have now largely overcome these issues and lipid-based vectors have demonstrated
encouraging results as mRNA vaccine platforms against several types of cancers. This review intends to
provide a detailed overview of lipid-based vectors for the development of therapeutic mRNA-based anti-tumor
vaccines.
In humans, glioblastoma is the most prevalent primary malignant brain tumor. Usually, glioblastoma has specific characteristics, such as aggressive cell proliferation and rapid invasion of surrounding brain tissue, leading to a poor patient prognosis. The current therapy—which provides a multidisciplinary approach with surgery followed by radiotherapy and chemotherapy with temozolomide—is not very efficient since it faces clinical challenges such as tumor heterogeneity, invasiveness, and chemoresistance. In this respect, natural substances in the diet, integral components in the lifestyle medicine approach, can be seen as potential chemotherapeutics. There are several epidemiological studies that have shown the chemopreventive role of natural dietary compounds in cancer progression and development. These heterogeneous compounds can produce anti-glioblastoma effects through upregulation of apoptosis and autophagy; allowing the promotion of cell cycle arrest; interfering with tumor metabolism; and permitting proliferation, neuroinflammation, chemoresistance, angiogenesis, and metastasis inhibition. Although these beneficial effects are promising, the efficacy of natural compounds in glioblastoma is limited due to their bioavailability and blood–brain barrier permeability. Thereby, further clinical trials are necessary to confirm the in vitro and in vivo anticancer properties of natural compounds. In this article, we overview the role of several natural substances in the treatment of glioblastoma by considering the challenges to be overcome and future prospects.
Inorganic materials, in particular nanoclays and silica nanoparticles, have attracted enormous attention due to their versatile and tuneable properties, making them ideal candidates for a wide range of biomedical applications,...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.