Regular consumption of low-dose aspirin reduces the occurrence of colorectal, esophageal, stomach, and gastrointestinal cancers. The underlying mechanism is unknown but may be linked to inhibition of angiogenesis. Because the effective doses of aspirin are consistent with the inhibition of cyclooxygenase-1 in platelets, we used liquid chromatography with tandem mass spectrometry analyses and immunoassays of human platelet releasates coupled with angiogenesis assays to search for the mediators of these effects. Blood or platelet-rich plasma from healthy volunteers stimulated with platelet activators produced a broad range of eicosanoids. Notably, preincubation of platelets with aspirin, but not with a P2Y12 receptor antagonist, caused a marked reduction in the production of 11-hydroxyeicosatetraenoic acid (HETE) and 15(S)-HETE, in addition to prostanoids such as thromboxane A2. Releasates from activated platelets caused cell migration and tube formation in cultured human endothelial cells and stimulated the sprouting of rat aortic rings in culture. These proangiogenic effects were absent when platelets were treated with aspirin but returned by coincubation with exogenous 15(S)-HETE. These results reveal 15(S)-HETE as a major platelet cyclooxygenase-1 product with strong proangiogenic effects. Thus, 15(S)-HETE represents a potential target for the development of novel antiangiogenic therapeutics, and blockade of its production may provide a mechanism for the anticancer effects of aspirin.—Rauzi, F., Kirkby, N. S., Edin, M. L., Whiteford, J. Zeldin, D. C., Mitchell, J. A., Warner, T. D. Aspirin inhibits the production of proangiogenic 15(S)-HETE by platelet cyclooxygenase-1.
Eicosanoids are important vascular regulators, but the phospholipase A2 (PLA2) isoforms supporting their production within the cardiovascular system are not fully understood. To address this, we have studied platelets, endothelial cells, and leukocytes from 2 siblings with a homozygous loss-of-function mutation in group IVA cytosolic phospholipase A2 (cPLA2α). Chromatography/mass spectrometry was used to determine levels of a broad range of eicosanoids produced by isolated vascular cells, and in plasma and urine. Eicosanoid release data were paired with studies of cellular function. Absence of cPLA2α almost abolished eicosanoid synthesis in platelets (e.g., thromboxane A2, control 20.5 ± 1.4 ng/ml vs. patient 0.1 ng/ml) and leukocytes [e.g., prostaglandin E2 (PGE2), control 21.9 ± 7.4 ng/ml vs. patient 1.9 ng/ml], and this was associated with impaired platelet activation and enhanced inflammatory responses. cPLA2α-deficient endothelial cells showed reduced, but not absent, formation of prostaglandin I2 (prostacyclin; control 956 ± 422 pg/ml vs. patient 196 pg/ml) and were primed for inflammation. In the urine, prostaglandin metabolites were selectively influenced by cPLA2α deficiency. For example, prostacyclin metabolites were strongly reduced (18.4% of control) in patients lacking cPLA2α, whereas PGE2 metabolites (77.8% of control) were similar to healthy volunteer levels. These studies constitute a definitive account, demonstrating the fundamental role of cPLA2α to eicosanoid formation and cellular responses within the human circulation.—Kirkby, N. S., Reed, D. M., Edin, M. L., Rauzi, F., Mataragka, S., Vojnovic, I., Bishop-Bailey, D., Milne, G. L., Longhurst, H., Zeldin, D. C., Mitchell, J. A., Warner, T. D. Inherited human group IVA cytosolic phospholipase A2 deficiency abolishes platelet, endothelial, and leucocyte eicosanoid generation.
Background and purpose: Some clinical studies have reported increased myocardial infarction in people living with human immunodeficiency virus (HIV) taking the antiretroviral abacavir sulphate (ABC). Given that clinical studies contain confounding variables (e.g., HIV-associated factors), we investigated the pharmacological effects of antiretrovirals on platelet function in HIV-negative volunteers in order to identify mechanisms of increased cardiovascular risk.Experimental approach: Platelets were isolated from healthy volunteers and HIVnegative subjects enrolled on a Phase I clinical trial and platelet function evaluated using aggregometry and flow cytometry. In vivo platelet thromboembolism was monitored in anaesthetized mice.Key results: Human platelet aggregation was unaffected by all antiretrovirals tested, but ABC treatment led uniquely to increased platelet granule release. ABC also interrupted NO-mediated inhibition of platelet aggregation and increased in vivo aggregation in mice. Another antiretroviral, tenofovir, did not affect platelet function. Furthermore, aggregation and activation of platelets isolated from 20 subjects taking clinically relevant doses of tenofovir were comparable to baseline samples.Conclusions and implications: ABC can enhance platelet activation, independently of variables that confound clinical studies, suggesting a potential pharmacological effect that is absent with tenofovir. Mechanistically, we propose that ABC enhances platelet degranulation and interrupts NO-mediated platelet inhibition. The interaction of ABC with NO signalling is demonstrated by ABC-mediated enhancement of aggregation in vivo and in vitro that persisted in the presence of NO. Although an association between ABC and platelet activation has not been confirmed in patients, these findings provide evidence of a mechanistic link between platelet activation and antiretroviral therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.