S100A13, a member of the S100 gene family of Ca 2؉ -binding proteins has been previously characterized as a component of a brain-derived heparin-binding multiprotein aggregate/complex containing fibroblast growth factor 1 (FGF1). We report that while expression of S100A13 in NIH 3T3 cells results in the constitutive release of S100A13 into the extracellular compartment at 37°C, co-expression of S100A13 with FGF1 represses the constitutive release of S100A13 and enables NIH 3T3 cells to release S100A13 in response to temperature stress. S100A13 release in response to stress occurs with kinetics similar to that observed for the stress-induced release of FGF1, but S100A13 expression is able to reverse the sensitivity of FGF1 release to inhibitors of transcription and translation. The release of FGF1 and S100A13 in response to heat shock results in the solubility of FGF1 at 100% (w/v) ammonium sulfate saturation, and the expression of a S100A13 deletion mutant lacking its novel basic residue-rich domain acts as a dominant negative effector of FGF1 release in vitro. Surprisingly, the expression of S100A13 also results in the stress-induced release of a Cys-free FGF1 mutant, which is normally not released from NIH 3T3 cells in response to heat shock. These data suggest that S100A13 may be a component of the pathway for the release of the signal peptide-less polypeptide, FGF1, and may involve a role for S100A13 in the formation of a noncovalent FGF1 homodimer. FGF11 and FGF2 are the prototype members of a large family of heparin-binding growth factor genes that regulate numerous biological processes such as neurogenesis, mesoderm formation, and angiogenesis (1, 2). FGF1 and FGF2 lack a classical signal peptide sequence that provides access to the conventional endoplasmic reticulum (ER)-Golgi secretion pathway, a characteristic that led to the hypothesis that the release of these polypeptides may proceed through novel release/export pathways (2). Our laboratory previously demonstrated that FGF1, but not FGF2, is released as a latent homodimer by a transcription-and translation-dependent mechanism in response to a variety of cellular stresses including heat shock (3), hypoxia (4), and serum starvation (5). Conversely, the disruption of communication between the ER and Golgi apparatus by brefeldin A does not prevent the release of FGF1 from NIH 3T3 cells, confirming that FGF1 release may occur through a nonconventional pathway (6).FGF1 is released in vitro as a reducing agent-and denaturant-sensitive complex, which contains the p40 extravesicular domain of the Ca 2ϩ -binding protein, p65 synaptotagmin (Syt)1 (7). The release of FGF1 in response to stress is dependent on Syt1 expression, since the expression of either a deletion mutant lacking 95 amino acids from the extravesicular portion of Syt1 or an antisense-Syt1 gene is able to repress FGF1 release in NIH 3T3 cells (7,8). In addition, FGF1 purified from ovine brain as a high molecular weight aggregate exists as a component of a noncovalent heparin-binding complex wit...
Non-classical protein release independent of the ER-Golgi pathway has been reported for an increasing number of proteins lacking an N-terminal signal sequence. The export of FGF1 and IL-1α, two pro-angiogenic polypeptides, provides two such examples. In both cases, export is based on the Cu 2+ -dependent formation of multiprotein complexes containing the S100A13 protein and might involve translocation of the protein across the membrane as a 'molten globule'. FGF1 and IL-1α are involved in pathological processes such as restenosis and tumor formation. Inhibition of their export by Cu 2+ chelators is thus an effective strategy for treatment of several diseases.
Smoking cigarettes is the major risk factor for chronic obstructive pulmonary disease (COPD). COPD is a condition associated with chronic pulmonary inflammation, characterized by macrophage activation, neutrophil recruitment, and cell injury. Many substances contained in cigarette smoke, including reactive oxygen species (ROS), have been proposed to be responsible for the inflammatory process of COPD. However, this issue remains unsettled. By gas chromatography/mass spectrometry (GC/MS) we show that acrolein and crotonaldehyde, two alpha,beta-unsaturated aldehydes, are contained in aqueous cigarette smoke extract (CSE) at micromolar concentrations and mimic CSE in evoking the release of the neutrophil chemoattractant IL-8 and of the pleiotropic inflammatory cytokine TNF-alpha from the human macrophagic cell line U937. In addition, acrolein (10-30 microM) released IL-8 also from cultured human alveolar macrophages and THP-1 macrophagic cells. 4-hydroxy-2-nonenal (30-100 microM), an endogenous alpha,beta-unsaturated aldehyde that is abundant in lungs of patients with COPD, stimulated the release of IL-8 from U937 cells, whereas the saturated aldehyde, acetaldehyde, was ineffective. CSE-evoked IL-8 release was remarkably (> 80%) inhibited by N-acetyl-cysteine (0.1-3 mM) or glutathione monoethyl ester (1-3 mM). Both compounds, by forming covalent adducts (Michael adducts), completely removed unsaturated aldehydes from CSE. Our data demonstrate that alpha,beta-unsaturated aldehydes are major mediators of cigarette smoke-induced macrophage activation, and suggest that they might contribute to pulmonary inflammation associated with cigarette smoke.
A growing number of proteins devoid of signal peptides have been demonstrated to be released through the non-classical pathways independent of endoplasmic reticulum and Golgi. Among them are two potent proangiogenic cytokines FGF1 and IL1α. Stress-induced transmembrane translocation of these proteins requires the assembly of copper-dependent multiprotein release complexes. It involves the interaction of exported proteins with the acidic phospholipids of the inner leaflet of the cell membrane and membrane destabilization. Not only stress, but also thrombin treatment and inhibition of Notch signaling stimulate the export of FGF1. Non-classical release of FGF1 and IL1α presents a promising target for treatment of cardiovascular, oncologic, and inflammatory disorders. Keywords non-classical secretion; FGF1; IL1α VARIETY OF NON-CLASSICALLY RELEASED PROTEINSThe familiar textbook scheme of protein secretion starts with the cotranslational protein translocation into the endoplasmic reticulum (ER). This translocation requires a molecular exit visa, a hydrophobic signal peptide located usually at the N-terminus of a secretable protein [Blobel, 1995]. After the protein is translocated through the ER membrane, its folding, transport, sorting, and covalent modifications occur in the ER and Golgi. Finally, the protein is released from the cell as a result of the fusion of an exocytotic vesicle with the cell membrane.
SummaryTropism and efficiency of skeletal muscle depend on the complex balance between anabolic and catabolic factors. This balance gradually deteriorates with aging, leading to an age-related decline in muscle quantity and quality, called sarcopenia: this condition plays a central role in physical and functional impairment in late life. The knowledge of the mechanisms that induce sarcopenia and the ability to prevent or counteract them, therefore, can greatly contribute to the prevention of disability and probably also mortality in the elderly. It is well known that skeletal muscle is the target of numerous hormones, but only in recent years studies have shown a role of skeletal muscle as a secretory organ of cytokines and other peptides, denominated myokines (IL6, IL8, IL15, Brain-derived neurotrophic factor, and leukaemia inhibitory factor), which have autocrine, paracrine, or endocrine actions and are deeply involved in inflammatory processes. Physical inactivity promotes an unbalance between these substances towards a pro-inflammatory status, thus favoring the vicious circle of sarcopenia, accumulation of fat -especially visceral -and development of cardiovascular diseases, type 2 diabetes mellitus, cancer, dementia and depression, according to what has been called "the diseasome of physical inactivity".
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.